Disposable face masks are among the personal protective equipment (PPE) that highly contribute to protecting people in the context of the current COVID-19 pandemic. Health authorities recommend wearing a mask as a barrier measure to limit the spread of viral respiratory diseases. During the first waves of the pandemic, besides professional high-quality PPE, decontaminated disposable mask reuse and homemade cloth masks were allowed due to scarcities. This work introduces a simple method based on-time history of the differential pressure, and an easy to use the setup for the testing of different kinds of respiratory protective masks for the purposes of quality control and evaluation of air permeability performance. The standard mask testing method and the new proposed approach were then used to evaluate the effect of machine washing on the widely used type of disposable masks; namely the surgical (medical) face masks. The objective is to determine the number of acceptable washing cycles that this kind of mask can withstand before losing its performance in terms of breathability and airflow resistance. Other quality characteristics such as material (fibres) degradation and hydrophobicity are investigated. Degradation mechanisms due to washing cycles for the different mask constituent layers were studied by scanning electron microscopy (SEM) imaging. This work is an attempt to contribute to the determination of the reusability threshold of general-purpose disposable surgical type face masks thereby contributing to the reduction of environmental concerns. Results in terms of the studied above parameters suggest limiting the reuse of standard type surgical masks to only one machine washing cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03091902.2022.2043476 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!