Phylogenetics of Historical Host Switches in a Bacterial Plant Pathogen.

Appl Environ Microbiol

Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA.

Published: April 2022

Xylella fastidiosa is an insect-transmitted bacterial plant pathogen found across the Americas and, more recently, worldwide. X. fastidiosa infects plants of at least 563 species belonging to 82 botanical families. While the species X. fastidiosa infects many plants, particular strains have increased plant specificity. Understanding the molecular underpinnings of plant host specificity in X. fastidiosa is vital for predicting host shifts and epidemics. While there may exist multiple genetic determinants of host range in X. fastidiosa, the drivers of the unique relationships between X. fastidiosa and its hosts should be elucidated. Our objective with this study was to predict the ancestral plant hosts of this pathogen using phylogenetic and genomic methods based on a large data set of pathogen whole-genome data from agricultural hosts. We used genomic data to construct maximum-likelihood (ML) phylogenetic trees of subsets of the core and pan-genomes. With those trees, we ran ML ancestral state reconstructions of plant host at two taxonomic scales (genus and multiorder clades). Both the core and pan-genomes were informative in terms of predicting ancestral host state, giving new insight into the history of the plant hosts of X. fastidiosa. Subsequently, gene gain and loss in the pan-genome were found to be significantly correlated with plant host through genes that had statistically significant associations with particular hosts. Xylella fastidiosa is a globally important bacterial plant pathogen with many hosts; however, the underpinnings of host specificity are not known. This paper contains important findings about the usage of phylogenetics to understand the history of host specificity in this bacterial species, as well as convergent evolution in the pan-genome. There are strong signals of historical host range that give us insights into the history of this pathogen and its various invasions. The data from this paper are relevant in making decisions for quarantine and eradication, as they show the historical trends of host switching, which can help us predict likely future host shifts. We also demonstrate that using multilocus sequence type (MLST) genes in this system, which is still a commonly used process for policymaking, does not reconstruct the same phylogenetic topology as whole-genome data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004383PMC
http://dx.doi.org/10.1128/aem.02356-21DOI Listing

Publication Analysis

Top Keywords

host
12
bacterial plant
12
plant pathogen
12
plant host
12
host specificity
12
plant
9
historical host
8
fastidiosa
8
xylella fastidiosa
8
fastidiosa infects
8

Similar Publications

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

The developmental lipidome of Nippostrongylus brasiliensis.

Parasit Vectors

January 2025

Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.

Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.

View Article and Find Full Text PDF

Background: Mycobacterium avium complex (MAC) is a common pathogen causing non-tuberculous mycobacterial infections, primarily affecting the lungs. Disseminated MAC disease occurs mainly in immunocompromised individuals, such as those with acquired immunodeficiency syndrome, hematological malignancies, or those positive for anti-interferon-γ antibodies. However, its occurrence in solid organ transplant recipients is uncommon.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!