Bacterial strains belonging to the genus are able to degrade various toxic organic compounds and tolerate high concentrations of metal(loid)s. We have previously shown that Rhodococcus aetherivorans BCP1 is resistant to various levels of the two arsenic inorganic species, arsenite [As(III)] and arsenate [As(V)]. However, while arsenite showed toxic effects at concentrations as low as 5 mM, arsenate at 30 mM boosted the growth rate of BCP1 cells and was toxic only at concentrations of >100 mM. Since such behavior could be linked to peculiar aspects of its metabolism, the transcriptomic analysis of BCP1 cells exposed to 5 mM As(III) and 30 mM As(V) was performed in this work. The aim was to clarify the mechanisms underlying the arsenic stress response of the two growth phenotypes in the presence of the two different oxyanions. The results revealed that As(III) induced higher activity of reactive oxygen species (ROS)-scavenging enzymes than As(V) in relation to the expression of enzymes involved in cellular damage recovery and redox buffers/cofactors (ergothioneine, mycofactocin, and mycothiol). Further, As(III) downregulated pathways related to cell division, while both oxyanions downregulated genes involved in glycolysis. Notably, As(V) induced the expression of enzymes participating in the synthesis of metallophores and rearranged the central and energetic metabolism, also inducing alternative pathways for ATP synthesis and glucose consumption. This study, in providing transcriptomic data on exposed to arsenic oxyanions, sheds some light on the plasticity of the rhodococcal response to arsenic stress, which may be important for the improvement of biotechnological applications. Members of the genus show high metabolic versatility and the ability to tolerate/resist numerous stress conditions, including toxic metals. BCP1 is able to tolerate high concentrations of the two inorganic arsenic oxyanions, arsenite [As(III)] and arsenate [As(V)]. Despite the fact that BCP1 intracellularly converts As(V) into As(III), this strain responds very differently to the presence of these two oxyanions in terms of cell growth and toxic effects. Indeed, while As(III) is highly toxic, exposure to specific concentrations of As(V) seems to boost cell growth. In this work, we investigated the transcriptomic response, ATP synthesis, glucose consumption, and HO degradation in BCP1 cells exposed to As(III) and As(V), inducing two different growth phenotypes. Our results give an overview of the transcriptional rearrangements associated with the dual response of BCP1 to the two oxyanions and provide novel insights into the energetic metabolism of under arsenic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9004369PMC
http://dx.doi.org/10.1128/aem.02209-21DOI Listing

Publication Analysis

Top Keywords

arsenic oxyanions
12
bcp1 cells
12
arsenic stress
12
transcriptomic analysis
8
dual response
8
rhodococcus aetherivorans
8
bcp1
8
aetherivorans bcp1
8
inorganic arsenic
8
tolerate high
8

Similar Publications

Outdoor exposure of a heavy metal doped concrete -Measuring and modelling of substance release.

J Environ Manage

January 2025

Institute of Building Materials Research, RWTH Aachen University, Schinkelstraße 3, 52062, Aachen, Germany. Electronic address:

Many construction products are in contact with, e.g., rain and seepage water during their service life.

View Article and Find Full Text PDF

Competitive adsorption of arsenate and phosphate on hematite facets: Molecular insights for enhanced arsenic retention.

Water Res

March 2025

State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.

Understanding the competition for adsorption between arsenate and other common oxyanions at mineral-water interfaces is critical for enhancing arsenate retention in the subsurface environment and mitigating exposure risks. This study investigated the competitive adsorption between arsenate and phosphate on hematite facets using batch experiments, together with in-situ infrared spectroscopy, two-dimensional correlation spectroscopy (2D-COS), and ab initio molecular dynamic (AIMD) simulations. This study's findings revealed that hematite exhibited notable selectivity for arsenate over phosphate in both adsorption capacity and rate, with selectivity significantly influenced by the exposed facets of the hematite and reaction concentrations.

View Article and Find Full Text PDF

The canonical arsRBC genes of the ars1 operon in Pseudomonas putida KT2440, which confer tolerance to arsenate and arsenite, are followed by a series of additional ORFs culminating in phoN1. The phoN1 gene encodes an acetyltransferase that imparts resistance to the glutamine synthetase inhibitor herbicide phosphinothricin (PPT). The co-expression of phoN1 and ars genes in response to environmental arsenic, along with the physiological effects, was analysed through transcriptomics of cells exposed to the oxyanion and phenotypic characterization of P.

View Article and Find Full Text PDF

This article provides an overview of the use of layered double hydroxides (LDHs) as effective sorbents in various extraction methods, including column-based solid-phase extraction (SPE), dispersive solid-phase extraction (DSPE), and magnetic solid-phase extraction (MSPE), for the separation and preconcentration of inorganic oxyanions of chromium, arsenic, and selenium. The primary focus is on enhancing the analytical performance of spectrometric detection techniques, particularly in terms of sensitivity and selectivity when analyzing low concentrations of target analytes in complex matrices. LDHs, which can be readily prepared and structurally modified with various substances, offer promising potential for the development of novel analytical methods.

View Article and Find Full Text PDF

Chromium and arsenic are commonly found in water and wastewater as hexavalent chromium, Cr(VI), and inorganic arsenic species, such as pentavalent arsenic, As(V). In aqueous media, both Cr(VI) and As(V) exist predominantly in the form of oxy-anions. In our study, we prepared a polyethylenimine-silica composite material (SiO₂-PEI) as an adsorbent to study the adsorption capacity for chromate and arsenate ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!