Colorful traits (i.e., ornaments) that signal quality have well-established relationships with individual condition and physiology. Furthermore, ornaments expressed in females may have indirect fitness effects in offspring the prenatal physiology associated with, and social consequences of, these signaling traits. Here we examine the influence of prenatal maternal physiology and phenotype on condition-dependent signals of their offspring in adulthood. Specifically, we explore how prenatal maternal testosterone, corticosterone, and ornament color and size correlate with female and male offspring survival to adulthood and ornament quality in the lizard . Offspring of females with more saturated badges and high prenatal corticosterone were less likely to survive to maturity. Badge saturation and area were negatively correlated between mothers and their male offspring, and uncorrelated to those in female offspring. Maternal prenatal corticosterone was correlated negatively with badge saturation of male offspring in adulthood. Our results indicate that maternal ornamentation and prenatal concentrations of a stress-relevant hormone can lead to compounding fitness costs by reducing offspring survival to maturity and impairing expression of a signal of quality in surviving males. This mechanism may occur in concert with social costs of ornamentation in mothers. Intergenerational effects of female ornamentation and prenatal stress may be interdependent drivers of balancing selection and intralocus sexual conflict over signaling traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928773PMC
http://dx.doi.org/10.3389/fendo.2022.801834DOI Listing

Publication Analysis

Top Keywords

prenatal corticosterone
12
offspring survival
12
male offspring
12
offspring
9
fitness costs
8
prenatal
8
signal quality
8
signaling traits
8
prenatal maternal
8
offspring adulthood
8

Similar Publications

Prenatal Corticosterone Impacts Nestling Condition and Immunity in Eastern Bluebirds.

J Exp Zool A Ecol Integr Physiol

January 2025

Department of Poultry Science, The University of Georgia, Athens, Georgia, USA.

Exposure of avian mothers to stressful conditions permanently alters offspring behavior and physiology. Yet, the effects of maternal stress on the development of offspring immunity in birds remain unclear, particularly in wild species. We injected Eastern bluebird (Sialia sialis) eggs with either a corticosterone or control solution, then measured the impacts on nestling morphology and two measures of immunity, bactericidal capacity and swelling responses to phytohemagglutinin.

View Article and Find Full Text PDF

Maternal immune activation (MIA), a maternal stressor, increases risk for neuropsychiatric diseases, such as Major Depressive Disorder in offspring. MIA of toll-like receptor 7 (TLR7) initiates an immune response in mother and fetuses in a sex-selective manner. The paraventricular nucleus of the hypothalamus (PVN), a brain region that is sexually dimorphic and regulates hypothalamic-pituitary-adrenal (HPA) stress responses, have been tied to stress-related behaviors (i.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds that interfere with the normal function of the endocrine system and are linked to direct and inherited adverse effects in both humans and wildlife. Legacy EDCs such as polychlorinated biphenyls (PCBs) are no longer used yet remain detectable in biological specimens around the world; concurrently, we are exposed to newer EDCs like the fungicide vinclozolin (VIN). This combination of individuals' direct environmental chemical exposures and any heritable changes caused by their ancestors' chemical exposures leads to a layered pattern of both direct and ancestrally inherited exposures that might have cumulative effects over generations.

View Article and Find Full Text PDF

Glucocorticoid-Dependent Retinal Degeneration and Vision Impairment in Mice Susceptible to Prenatal Stress-Induced Behavioral Abnormalities.

Cell Mol Neurobiol

December 2024

Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea.

Chronic exposure to prenatal stress can impair neurogenesis and lead to irreversible cognitive and neuropsychiatric abnormalities in offspring. The retina is part of the nervous system; however, the impacts of prenatal stress on retinal neurogenesis and visual function remain unclear. This study examined how elevated prenatal glucocorticoid levels differentially affect retinal development in the offspring of pregnant mice exposed to chronic unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Developing animals are increasingly exposed to elevated temperatures as global temperatures rise as a result of climate change. Vertebrates can be affected by elevated temperatures during development directly, and indirectly through maternal effects (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!