Two second generation platinum complexes currently undergoing clinical chemotherapeutic trials, carboplatin (CBDCA) and iproplatin (CHIP), were evaluated for their ability to alter the survival of cultured Chinese hamster V79 cells following irradiation. Two protocols were employed. In the first, the drug was added to preplated cells, some of which were subsequently made hypoxic with nitrogen gas. These hypoxic cells were irradiated following 1 hour exposure to drug and survival was assessed by standard colony forming unit (CFU) methods. Enhancement ratios (ER) of approximately 1.4 were obtained for irradiation under hypoxic conditions, if the cells were exposed to equitoxic doses of CBDCA (500 microM) CHIP (50 microM). In the second series of experiments, cells were treated with 10 Gy in air and then incubated for various times prior to trypsinization and serial dilution of single cell suspensions. Six hours after irradiation, cells treated with X rays alone had recovered to produce a surviving fraction twice that of cells trypsinized immediately after irradiation (not held). Post-irradiation administration of CBDCA (50 microM) or CHIP (20 microM), at a time when free radical-mediated radiosensitization would not be possible, operationally inhibited this recovery from radiation-induced potentially lethal damage (PLD). Inhibition, expressed as recovery inhibition factor (RIF) after 6 hr with drug, was 2.0 for CBDCA and 1.2 for CHIP. These results suggest that the rationale for designing clinical trials to exploit interactions between cisplatin and radiation might also extend to include combined modality therapy using radiation with either of these two platinum complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0360-3016(86)90185-9 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Edinburgh, Edinburgh Cancer Research, Crewe Road South, Institute of Genetics and Cancer, EH4 2XR, Edinburgh, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Beyond their classical role as cytotoxics, Platinum (Pt) coordination complexes recently joined the selected group of transition metals capable of performing bioorthogonal reactions in living environments. To minimize their reactivity towards nucleophiles, which limit their catalytic performance, we investigated the use of Pt(0) with different forms, sizes and surface functionalization. We report herein the development of PEGylated Pt nanodendrites with the capacity to activate prodyes and prodrugs in cell culture and in vivo.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
College of Marine Sciences, Beibu Gulf University, Qinzhou, China.
Correction for 'A novel platinum(II) complex with a berberine derivative as a potential antitumor agent targeting G-quadruplex DNA' by Shu-Lin Zhang , , 2025, https://doi.org/10.1039/d4ob01705f.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
Photoactivatable metal complexes offer the prospect of novel drugs with low side effects and new mechanisms of action to combat resistance to current therapy. We highlight recent progress in the design of platinum, ruthenium, iridium, gold and other transition metal complexes, especially for applications as anticancer and anti-infective agents. In particular, understanding excited state chemistry related to identification of the bioactive species (excited state metallomics/pharmacophores) is important.
View Article and Find Full Text PDFInorg Chem Front
January 2025
Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557.
Platinum chemotherapy is part of every second anticancer treatment regimen. However, its application is limited by severe side effects and drug resistance. The combination of platinum-based chemotherapeutics with EGFR inhibitors has shown remarkable synergism in clinical treatment.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!