A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Neural Networks for Medical Image Segmentation. | LitMetric

Image segmentation is a branch of digital image processing which has numerous applications in the field of analysis of images, augmented reality, machine vision, and many more. The field of medical image analysis is growing and the segmentation of the organs, diseases, or abnormalities in medical images has become demanding. The segmentation of medical images helps in checking the growth of disease like tumour, controlling the dosage of medicine, and dosage of exposure to radiations. Medical image segmentation is really a challenging task due to the various artefacts present in the images. Recently, deep neural models have shown application in various image segmentation tasks. This significant growth is due to the achievements and high performance of the deep learning strategies. This work presents a review of the literature in the field of medical image segmentation employing deep convolutional neural networks. The paper examines the various widely used medical image datasets, the different metrics used for evaluating the segmentation tasks, and performances of different CNN based networks. In comparison to the existing review and survey papers, the present work also discusses the various challenges in the field of segmentation of medical images and different state-of-the-art solutions available in the literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8930223PMC
http://dx.doi.org/10.1155/2022/9580991DOI Listing

Publication Analysis

Top Keywords

medical image
20
image segmentation
20
medical images
12
segmentation
9
deep neural
8
neural networks
8
medical
8
image
8
field medical
8
segmentation medical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!