AI Article Synopsis

  • The field of AI has seen rapid advancements, influenced by discoveries in biology and neuroscience, particularly in how the human brain organizes itself.
  • A new model called Reentrant Self-Organizing Maps (ReSOM) merges Self-Organizing Maps and Hebbian learning, aimed at improving multimodal classification tasks beyond existing unsupervised learning methods.
  • The integration of the ReSOM model with a specialized FPGA platform, SCALP, enhances performance through modular hardware, allowing for efficient parallel processing and better accuracy in merging multiple data types while also optimizing power usage.

Article Abstract

The field of artificial intelligence has significantly advanced over the past decades, inspired by discoveries from the fields of biology and neuroscience. The idea of this work is inspired by the process of self-organization of cortical areas in the human brain from both afferent and lateral/internal connections. In this work, we develop a brain-inspired neural model associating Self-Organizing Maps (SOM) and Hebbian learning in the Reentrant SOM (ReSOM) model. The framework is applied to multimodal classification problems. Compared to existing methods based on unsupervised learning with post-labeling, the model enhances the state-of-the-art results. This work also demonstrates the distributed and scalable nature of the model through both simulation results and hardware execution on a dedicated FPGA-based platform named SCALP (Self-configurable 3D Cellular Adaptive Platform). SCALP boards can be interconnected in a modular way to support the structure of the neural model. Such a unified software and hardware approach enables the processing to be scaled and allows information from several modalities to be merged dynamically. The deployment on hardware boards provides performance results of parallel execution on several devices, with the communication between each board through dedicated serial links. The proposed unified architecture, composed of the ReSOM model and the SCALP hardware platform, demonstrates a significant increase in accuracy thanks to multimodal association, and a good trade-off between latency and power consumption compared to a centralized GPU implementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926299PMC
http://dx.doi.org/10.3389/fnins.2022.825879DOI Listing

Publication Analysis

Top Keywords

neural model
8
resom model
8
model
6
unified software/hardware
4
software/hardware scalable
4
scalable architecture
4
architecture brain-inspired
4
brain-inspired computing
4
computing based
4
based self-organizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!