Cubiu, an Amazonian fruit, is widely used as food and popular treatment for pathologies that present an inflammatory pattern, such as skin wound healing. However, there is still no confirmation in the scientific literature about the safety profile, as well as the anti-inflammatory, antioxidant, and healing actions of cubiu. This study is divided into two experimental protocols using Wistar rats. Thus, the first objective (protocol 1) of this study was to evaluate the toxicity of an oral administration of cubiu extract at different doses for 28 days. The macroscopic and microscopic analyses of the liver and kidney were performed, and the following analysis was determined in plasma: glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, gamma-glutamyl transpeptidase, glucose, triglycerides, total cholesterol, urea, creatinine, and uric acid. After, we conducted the second protocol aimed to establish the potential antioxidant and anti-inflammatory capacity of cubiu and its interaction with magnetic field in skin wound healing. On days 3, 7, and 14 of treatment, skin and blood samples were collected and analyzed: the oxidative stress biomarkers (reactive substances to thiobarbituric acid, nonprotein thiols, superoxide dismutase, catalase, and glutathione S-transferase), myeloperoxidase enzymatic activity, and cytokines levels (interleukin 1, interleukin 6, interleukin 10, and tumor necrosis factor-alpha). The cubiu has shown to be safe and nontoxic. Both cubiu and magnetic field promoted decreased levels of proinflammatory and prooxidant biomarkers (interleukin 1, interleukin 6, tumor necrosis factor-alpha, and reactive substances to thiobarbituric acid), as well as increased levels of anti-inflammatory and antioxidant biomarkers (interleukin 10, nonprotein thiols, and superoxide dismutase), with greater potential when treatments are used in association. Thus, cubiu promotes antioxidant and anti-inflammatory action in skin wound healing, while also improving results of the conventional treatment for skin healing (magnetic field) when used in association.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8930208 | PMC |
http://dx.doi.org/10.1155/2022/7562569 | DOI Listing |
Int J Cardiovasc Imaging
January 2025
Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
Our study aims to assess the robustness of myocardial radiomic texture features (RTF) to segmentation variability and variations across scanners with different field strengths, addressing concerns about reliability in clinical practices. We conducted a retrospective analysis on 45 pairs of CMR T1 maps from 15 healthy volunteers using 1.5 T and 3 T Siemens scanners.
View Article and Find Full Text PDFSmall
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
Cells perceive external and internally generated forces of different kinds, significantly impacting their cellular biology. In the relatively nascent field of mechanobiology, the impact of such forces is studied and further utilized to broaden the knowledge of cellular developmental pathways, disease progression, tissue engineering, and developing novel regenerative strategies. However, extensive considerations of mechanotransduction pathways for biomedical applications are still broadly limited due to a lack of affordable technologies in terms of devices and simple magnetic actuatable materials.
View Article and Find Full Text PDFJ Magn Reson Imaging
February 2025
BioMedical Engineering and Imaging Institute, Icahn School of Medicine Mount Sinai, New York, New York, USA.
Background: Several factors can impair image quality and reliability of liver magnetic resonance elastography (MRE), such as inadequate driver positioning, insufficient wave propagation and patient-related factors.
Purpose: To report initial results on automatic classification of liver MRE image quality using various deep learning (DL) architectures.
Study Type: Retrospective, single center, IRB-approved human study.
J Intern Med
January 2025
Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
Magnetic resonance imaging (MRI) is a cornerstone of non-invasive diagnostics and treatment monitoring, particularly for diseases of the central nervous system. Although 1.5- and 3 Tesla (T) field strengths remain the clinical standard, the advent of 7 T MRI represents a transformative step forward, offering superior spatial resolution, contrast, and sensitivity for visualizing neuroanatomy, metabolism, and function.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1371/journal.pone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!