To improve osseointegration caused by the stress-shielding effect and the inert nature of titanium-based alloys, in this work, we successfully constructed a strontium calcium phosphate (Sr-CaP) coating on three-dimensional (3D)-printed Ti6Al4V scaffolds to address this issue. The energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) results indicated that the coatings with and without Sr doping mainly consisted of CaHPO. The bonding strength of Sr doping coating met the required ISO 13 779-4-2018 standard (≥15 MPa). The results suggested that the Sr-CaP-modified Ti6Al4V scaffolds were found to effectively promote mice bone-marrow stem cell (mBMSC) adhesion, spreading, and osteogenesis. The experiments also showed that the Sr-CaP-modified Ti6Al4V scaffolds could significantly improve bone regeneration and osseointegration. More importantly, Sr-doped CaP-coated Ti6Al4V scaffolds were found to accelerate bone healing in comparison to CaP-coated Ti6Al4V scaffolds. The Sr-CaP-modified Ti6Al4V scaffolds are considered a promising strategy to develop bioactive surfaces for enhancing the osseointegration between the implant and bone tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928158 | PMC |
http://dx.doi.org/10.1021/acsomega.1c05908 | DOI Listing |
3D Print Addit Manuf
December 2024
Orthopedics Program, Herston Biofabrication Institute, Block 7 Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
The utilization of bone scaffold implants represents a promising approach for repairing substantial bone defects. In recent years, various traditional scaffold structures have been developed and, with advances in materials biology and computer technology, novel scaffold designs are now being evaluated. This study investigated the effects of a novel scaffold unit cell design (Hexanoid) through a computational framework, comparing its performance to that of four well-known scaffold designs.
View Article and Find Full Text PDFBiomed Mater
December 2024
Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, No. 199 Dazhi Street, Harbin 150001, China., Harbin, 150001, CHINA.
Due to the limited self-regeneration capacity of bone, medical interventions is often required for large segmental bone defects. In this study, the application of porous titanium alloy (Ti6Al4V) scaffold in bone defect repair was investigated. Owing to its excellent mechanical properties and biocompatibility, Ti6Al4V is a preferred choice for orthopedic implants.
View Article and Find Full Text PDFBiomed Mater
December 2024
Department of Orthopaedics, Fourth Military Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, 710032, CHINA.
3D printed customized titanium alloy (Ti6Al4V, TC4) as load-bearing prostheses and implants, such as intervertebral cage, were widely used in clinical practice. Natively biological inertia and inadequate bone in-growth of porous titanium alloy scaffolds hampered their clinically application efficiency and then extended healing period. To improve osseointegration capacity of 3D printed intervertebral cage, sandblasting was selected to execute their surface treatment.
View Article and Find Full Text PDFUnlabelled: The aim of the study was the clinical study of the framework ability of the PRF scaffold obtained by simultaneous centrifugation of the patient's blood and bone-plastic material.
Materials And Methods: A total of 60 patients, aged between 20 and 50 years, with radicular cysts of the jaws, were selected for inclusion into the clinical studies. All patients were divided into groups I and II, who underwent cystectomy and bone plastic surgery according to the standard technique using mineralized CenoBone®.
Materials (Basel)
October 2024
National Research Council, CNR-ICMATE, Via Gaetano Previati, 23900 Lecco, Italy.
Additively manufactured medical devices require proper surface finishing before their use to remove partially adhered particles and provide adequate surface roughness. The literature widely investigates regular lattice structures-mainly scaffolds with small pores to enhance osseointegration; however, only a few studies have addressed the impact of surface finishing on the dimensional deviation and the global and local mechanical responses of lattice samples. Therefore, the current research investigates the impact of biomedical surface finishing (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!