Wearable sensors promise to transform human understanding of body state. However, despite many wearable sensor modalities that exist, few demonstrate the raw capabilities required for many emerging healthcare applications-passivity (and microelectronics-free), wireless readout, long-term operation, and specificity. Hydrogel-interlayer radio-frequency resonators are demonstrated as a versatile platform for passive and wireless biosensing. Fabricated using a simple vinyl cutter, the base resonator is composed of unanchored, broad-side coupled coils interceded by multifunctional hydrogels-such resonators are tuned to be sensitive to specific analytical or physical signals by modifying hydrogel composition. These resonators are transformed into near-field communication (NFC) sensor circuits through the simple attachment of an LED. These enable direct quantification of sensor state by cellphone and eye with no specialized electronics required. Resonator arrays are finally fused with silicone to form soft, wireless sensor skins that enable co-readout of analytical to physical signals while molded to human subjects. Such low-cost, accessible platforms can integrate with environments in transformative ways, enabling new applications in wireless sensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8932959 | PMC |
http://dx.doi.org/10.1002/aelm.201901311 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!