A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NIR-II Fluorescence Imaging Using Indocyanine Green Provides Early Prediction of Skin Avulsion-Injury in a Porcine Model. | LitMetric

NIR-II Fluorescence Imaging Using Indocyanine Green Provides Early Prediction of Skin Avulsion-Injury in a Porcine Model.

Clin Cosmet Investig Dermatol

Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.

Published: March 2022

Purpose: Currently, skin avulsion-injury reconstruction is mainly based on subjective evaluation of traditional clinical signs. It frequently results in unnecessary tissue loss and incomplete debridement-related infection. This pilot study aimed to develop a novel near-infrared (NIR) II fluorescence imaging method to assess avulsed skin-perfusion status and thus predict its outcome early.

Methods: Skin avulsion-injury models were established by avulsing 10×4 cm pedicled flaps on porcine hindlimbs. A clinically available improved NIR-Ι/II multispectral imaging system was applied for NIR imaging using indocyanine green (ICG) fluorescence. Continuous NIR-wavelength filters and dynamic imaging were used to investigate optimal imaging conditions and time window. NIR-Ι/II imaging was synchronously conducted for quality comparison of the two methods. Visual inspection and histological studies were used for assessing the final outcome of avulsed skin.

Results: NIR-II fluorescence imaging with a 1,100 nm filter obtained satisfactory performance and reached maximum fluorescence intensity at 1 minute after ICG injection. NIR-II imaging clearly visualized the microvascular network in vascularized avulsed skin and revealed "dark areas" in nonvascularized avulsed skin in a real-time fashion. NIR-II fluorescence imaging demonstrated higher resolution than NIR-I imaging, as indicated by ae higher signal-to-background ratio (2.11) and lower full width at half maximum (6.50614). The dark area of avulsed skin on imaging finally developed to necroses that were confirmed by histology.

Conclusion: NIR-II real-time fluorescence imaging clearly maps the microvascular network and shows the perfusion status of avulsed skin at higher resolution than traditional NIR-I imaging, and thus precisely predicts the outcome of avulsed skin early.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923835PMC
http://dx.doi.org/10.2147/CCID.S357989DOI Listing

Publication Analysis

Top Keywords

fluorescence imaging
20
avulsed skin
20
imaging
14
nir-ii fluorescence
12
skin avulsion-injury
12
imaging indocyanine
8
indocyanine green
8
skin
8
outcome avulsed
8
imaging clearly
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!