Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931407PMC
http://dx.doi.org/10.3389/fmicb.2022.805694DOI Listing

Publication Analysis

Top Keywords

fungal parasites
12
fungal
8
benthic diatoms
8
aquatic fungi
8
fungal diversity
8
diversity
5
antarctic glacial
4
glacial meltwater
4
meltwater impacts
4
impacts diversity
4

Similar Publications

Evaluating the Impact of N-Glycan Sequon Removal in the p27 Peptide on RSV F Protein Immunogenicity and Functionality.

Viruses

November 2024

Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium.

Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children, elderly and immunocompromised patients worldwide. The RSV fusion (F) protein, which has 5-6 N-glycosylation sites depending on the strain, is a major target for vaccine development. Two to three of these sites are located in the p27 peptide, which is considered absent in virions.

View Article and Find Full Text PDF

Background: A goal of mucosal human immunodeficiency virus type 1 (HIV-1) vaccines is to generate mucosal plasma cells producing polymeric IgA (pIgA)-neutralizing antibodies at sites of viral entry. However, vaccine immunogens capable of eliciting IgA neutralizing antibodies (nAbs) that recognize tier 2 viral isolates have not yet been identified.

Methods: To determine if stabilized native-like HIV-1 envelope (Env) trimers could generate IgA nAbs, we purified total IgA and IgG from the banked sera of six rhesus macaques that had been found in a previous study to develop serum nAbs after subcutaneous immunization with BG505.

View Article and Find Full Text PDF

Exploring Novel Fungal-Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation.

Toxics

December 2024

Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil.

Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified.

View Article and Find Full Text PDF

Biofilms are a well-known multifactorial virulence factor with a pivotal role in chronic bacterial infections. Their pathogenicity is determined by the combination of strain-specific mechanisms of virulence and the biofilm extracellular matrix (ECM) protecting the bacteria from the host immune defense and the action of antibacterials. The successful antibiofilm agents should combine antibacterial activity and good biocompatibility with the capacity to penetrate through the ECM.

View Article and Find Full Text PDF

Metagenomic Insight into the Associated Microbiome in Plasmodia of Myxomycetes.

Microorganisms

December 2024

Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.

During the trophic period of myxomycetes, the plasmodia of myxomycetes can perform crawling feeding and phagocytosis of bacteria, fungi, and organic matter. Culture-based studies have suggested that plasmodia are associated with one or several species of bacteria; however, by amplicon sequencing, it was shown that up to 31-52 bacteria species could be detected in one myxomycete, suggesting that the bacterial diversity associated with myxomycetes was likely to be underestimated. To fill this gap and characterize myxomycetes' microbiota and functional traits, the diversity and functional characteristics of microbiota associated with the plasmodia of six myxomycetes species were investigated by metagenomic sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!