With the rising level of atmospheric CO worsening climate change, a promising global movement toward carbon neutrality is forming. Sustainable CO management based on carbon capture and utilization (CCU) has garnered considerable interest due to its critical role in resolving emission-control and energy-supply challenges. Here, a comprehensive review is presented that summarizes the state-of-the-art progress in developing promising materials for sustainable CO management in terms of not only capture, catalytic conversion (thermochemistry, electrochemistry, photochemistry, and possible combinations), and direct utilization, but also emerging integrated capture and in situ conversion as well as artificial-intelligence-driven smart material study. In particular, insights that span multiple scopes of material research are offered, ranging from mechanistic comprehension of reactions, rational design and precise manipulation of key materials (e.g., carbon nanomaterials, metal-organic frameworks, covalent organic frameworks, zeolites, ionic liquids), to industrial implementation. This review concludes with a summary and new perspectives, especially from multiple aspects of society, which summarizes major difficulties and future potential for implementing advanced materials and technologies in sustainable CO management. This work may serve as a guideline and road map for developing CCU material systems, benefiting both scientists and engineers working in this growing and potentially game-changing area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202201547 | DOI Listing |
Anal Chem
January 2025
Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium.
Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.
View Article and Find Full Text PDFSci Adv
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.
View Article and Find Full Text PDFPLoS One
January 2025
School of Applied Sciences, University of West of England, Bristol, United Kingdom.
Knowledge of plant growth dynamics is essential where constraints such as COVID-19 lockdown restrictions have limited its field establishment. Thus, modeling can be used to predict plant performance where field planting/monitoring cannot be achieved. This study was conducted on the growth dynamics of rubber planted on two acid soils treated with either dolomitic limestone (GML), kieserite or Mg-rich synthetic gypsum (MRSG) to supply the Mg required by rubber seedlings.
View Article and Find Full Text PDFPLoS One
January 2025
College of Economics and Management, Wenzhou University of Technology, Wenzhou, China.
Economic performance is an important indicator of the efficiency and quality of a company's production, which is closely related to the profitability of the company and is crucial for the development of the manufacturing industry.This paper aims to develop a theoretical framework for assessing economic performance within the Chinese manufacturing industry. It achieves this by incorporating inputs, outputs, and energy consumption costs into the production function.
View Article and Find Full Text PDFIntroduction: Ethiopia has made notable progress in reducing maternal and perinatal mortality, yet challenges remain in meeting the 2030 Sustainable Development Goals. Persistent issues such as low service utilization, coupled with poor quality, fragmented care, and ineffective referral systems hinder progress. The "Improve Primary Health Care Service Delivery (IPHCSD)" project, implemented by JSI and Amref Health Africa since April 2022, seeks to address these gaps through a Networks of Care (NoCs) approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!