Phase transformation lies at the heart of materials science because it allows for the control of structural phases of solids with desired properties. It has long been a challenge to manipulate phase transformations in crystals at the nanoscale with designed interfaces and compositions. Here in situ electron microscopy is employed to fabricate novel 2D phases with different stoichiometries in monolayer MoS and MoSe . The multiphase transformations: MoS  → Mo S and MoSe  → Mo Se which are highly localized with atomically sharp boundaries are observed. Their atomic mechanisms are determined as chalcogen 2H ↔ 1T sliding, cation shift, and commensurate lattice reconstructions, resulting in decreasing direct bandgaps and even a semiconductor-metal transition. These results will be a paradigm for the manipulation of multiphase heterostructures with controlled compositions and sharp interfaces, which will guide the future phase engineered electronics and optoelectronics of metal chalcogenides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202200643DOI Listing

Publication Analysis

Top Keywords

phase transformations
8
metal chalcogenides
8
multiple phase
4
transformations monolayer
4
monolayer transition
4
transition metal
4
chalcogenides phase
4
phase transformation
4
transformation lies
4
lies heart
4

Similar Publications

Copper-based halides have attracted significant attention due to their unique photophysical properties and diverse coordination configurations. However, enhancing water stability and modulating structural transitions in cuprous halide materials remain challenging. In this work, we successfully synthesized three copper(I) halides, (CHP)CuBr (L1, [CHP] = hexyltriphenylphosphonium), (CHP)CuBr (L2), and (CHP)CuI (L3), via solvent volatilization, demonstrating exceptional water stability even after 27 days of submersion.

View Article and Find Full Text PDF

Prediction of Cyclic O Molecules Stabilized by Helium under Pressure.

Adv Sci (Weinh)

January 2025

Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China.

Oxygen usually exists in the form of diatomic molecules at ambient conditions. At high pressure, it undergoes a series of phase transitions from diatomic O to O cluster and ultimately dissociates into a polymeric O spiral chain structure. Intriguingly, the commonly found cyclic hexameric molecules in other group VIA elements (e.

View Article and Find Full Text PDF

The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment.

J Biomed Mater Res B Appl Biomater

February 2025

Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.

View Article and Find Full Text PDF

Central nervous system (CNS) involvement in Waldenström macroglobulinemia (WM) is a rare complication that can manifest as Bing-Neel syndrome (BNS) or as histological transformation (HT) to diffuse large B-cell lymphoma (DLBCL). We report data from a single-center cohort of 469 patients consecutively diagnosed with WM between 2000 and 2022. BNS was identified in 1.

View Article and Find Full Text PDF

Pressure-driven phase transformations on MgCa(CO) huntite carbonate.

Phys Chem Chem Phys

January 2025

CELLS-ALBA Synchrotron Light Facility, Cerdanyola del Vallés, 08290, Barcelona, Spain.

Magnesium and calcium carbonate minerals are significant reservoirs of Earth's carbon and understanding their behavior under different conditions is crucial for elucidating the mechanisms of deep carbon storage. Huntite, MgCa(CO), is one of the two stable calcium magnesium carbonate phases, together with dolomite. The distinctive cation coordination environment of Ca atoms compared to calcite-type and dolomite structures makes huntite a comparatively less dense phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!