Background: Failure to complete secondary education often results from a process of educational disengagement. Studies of teen childbearing and high school completion have not adequately accounted for the role of school disengagement prior to conception and may overestimate causal impacts of teen childbearing.
Methods: We link New York City birth and school records to study a cohort of 22,484 Black and Latina public school students. We measure disengagement with monthly absences from age 12 until the month before conception and identify five preconception attendance trajectories using group-based trajectory modeling.
Results: Preconception absenteeism can account for as much as half the deficit in high school completion associated with a teen birth. This finding is robust to statistical approaches, such as school fixed effects and inverse-probability-weighted regression adjustment.
Conclusions: Our results suggest that programs intending to increase educational attainment among young women should emphasize attendance and engagement, rather than primarily teenage pregnancy prevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/josh.13182 | DOI Listing |
Phys Rev Lett
December 2024
Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea and Division of Quantum Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.
High-dimensional multipartite entanglement plays a crucial role in quantum information science. However, existing schemes for generating such entanglement become complex and costly as the dimension of quantum units increases. In this Letter, we overcome the limitation by proposing a significantly enhanced linear optical heralded scheme that generates the d-level N-partite Greenberger-Horne-Zeilinger (GHZ) state with single-photon sources and linear operations.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
CERN, Geneva, Switzerland.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
A search for violation of the charge-parity (CP) symmetry in the D^{+}→K^{-}K^{+}π^{+} decay is presented, with proton-proton collision data corresponding to an integrated luminosity of 5.4 fb^{-1}, collected at a center-of-mass energy of 13 TeV with the LHCb detector. A novel model-independent technique is used to compare the D^{+} and D^{-} phase-space distributions, with instrumental asymmetries subtracted using the D_{s}^{+}→K^{-}K^{+}π^{+} decay as a control channel.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom.
We investigate the implications of the baryon acoustic oscillations measurement released by the Dark Energy Spectroscopic Instrument for interacting dark energy (IDE) models characterized by an energy-momentum flow from dark matter to dark energy. By combining Planck-2018 and Dark Energy Spectroscopic Instrument data, we observe a preference for interactions, leading to a nonvanishing interaction rate ξ=-0.32_{-0.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA.
We derive a refined version of the Affleck-Ludwig-Cardy formula for a 1+1D conformal field theory, which controls the asymptotic density of high energy states on an interval transforming under a given representation of a noninvertible global symmetry. We use this to determine the universal leading and subleading contributions to the noninvertible symmetry-resolved entanglement entropy of a single interval. As a concrete example, we show that the ground state entanglement Hamiltonian for a single interval in the critical double Ising model enjoys a Kac-Paljutkin H_{8} Hopf algebra symmetry when the boundary conditions at the entangling points are chosen to preserve the product of two Kramers-Wannier symmetries, and we present the corresponding symmetry-resolved entanglement entropies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!