An improved optimization algorithm for a multi-depot vehicle routing problem considering carbon emissions.

Environ Sci Pollut Res Int

School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai, 200030, China.

Published: August 2022

In a multi-depot vehicle routing problem (MDVRP) of same-city delivery, driving distance and actual loading can greatly influence the amount of carbon emissions generated. This paper considers fuel and carbon emission costs as part of total costs, proposes a MDVRP with minimized logistics costs and driven distance, and then establishes a mixed integer programming model. An improved chemical reaction optimization algorithm is also designed by considering this problem's characteristics (i.e., a greedy search strategy is presented to generate an initial population), and two coding approaches (i.e., two-part coding and matrix coding) are applied prior to designing four chemical reaction operators. The simulation experiment is carried out using a set of a random instances and the experimental results demonstrate that one can reduce carbon emissions by driving extra lesser distances, providing a methodological guide for MDVRPs with logistics costs and carbon emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-19370-0DOI Listing

Publication Analysis

Top Keywords

carbon emissions
16
optimization algorithm
8
multi-depot vehicle
8
vehicle routing
8
routing problem
8
logistics costs
8
chemical reaction
8
carbon
5
improved optimization
4
algorithm multi-depot
4

Similar Publications

This study investigates the seasonal and diurnal variations of soil CO flux (Fc) and the impact of meteorological variables on its dynamics. The study took place in the subtropical forest ecosystem of Kaziranga National Park (KNP), from November 2019 to March 2020. The highest Fc (6.

View Article and Find Full Text PDF

Revolutionizing Methane Transformation with the Dual Production of Aromatics and Electricity in a Protonic Ceramic Electrocatalytic Membrane Reactor.

ACS Appl Mater Interfaces

January 2025

Department of Hydrogen and Electrochemistry, Idaho National Laboratory, Idaho Falls, ID 83415, United States.

Reducing the energy and carbon intensity of the conventional chemical processing industry can be achieved by electrochemically transforming natural gases into higher-value chemicals with higher efficiency and near-zero emissions. In this work, the direct conversion of methane to aromatics and electricity has been achieved in a protonic ceramic electrocatalytic membrane reactor through the integration of a proton-conducting membrane assembly and a trimetallic Pt-Cu/Mo/ZSM-5 catalyst for the nonoxidative methane dehydro-aromatization reaction. In this integrated system, a remarkable 15.

View Article and Find Full Text PDF

Purification and Value-Added Conversion of NO under Ambient Conditions with Photo-/Electrocatalysis Technology.

Environ Sci Technol

January 2025

Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NO) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NO removal, green purification and value-added conversion of NO under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NO purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities.

View Article and Find Full Text PDF

A successful positron emission tomography imaging program involving carbon-11 radiotracers demands fast, efficient, and reliable synthesis methods, requiring an on-site cyclotron and radiochemistry group, as well as clinical staff trained to operate under the unique constraints of the carbon-11 radionuclide. This study examines the merits and advantages of a captive solvent 'loop method' of radiolabeling four tracers with the carbon-11 radionuclide, producing the radioligands [C]ER-176, [C]MRB, [C]mHED, and [C]PiB. The 'loop method' is compared against the traditional reactor-based method of carbon-11 methylation in the course of synthesizing the same radiotracers on the identical automated platform.

View Article and Find Full Text PDF

Modeling Hydrogen Markets: Energy System Model Development Status and Decarbonization Scenario Results.

Energy Clim Chang

December 2024

South China University of Technology, School of Future Technology, 777 Xingye Ave East, Panyu District, Guangzhou, Guangdong, 511442, China.

Hydrogen can be used as an energy carrier and chemical feedstock to reduce greenhouse gas emissions, especially in difficult-to-decarbonize markets such as medium- and heavy-duty vehicles, aviation and maritime, iron and steel, and the production of fuels and chemicals. Significant literature has been accumulated on engineering-based assessments of various hydrogen technologies, and real-world projects are validating technology performance at larger scales and for low-carbon supply chains. While energy system models continue to be updated to track this progress, many are currently limited in their representation of hydrogen, and as a group they tend to generate highly variable results under decarbonization constraints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!