Effects of heparan sulfate from porcine mucosa on Aβ-induced neurotoxicity in vitro and in vivo.

Int J Biol Macromol

Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250012, China. Electronic address:

Published: May 2022

Amyloid-β (Aβ) deposition and neurotoxicity play an important role in Alzheimer's disease (AD). Notably, the nonnegligible role of endogenous heparan sulfate (HS) in the release, uptake and misfolding of Aβ sheds light on the discovery of HS as an effective drug for AD. In this work, the effects of HS from porcine mucosa (PMHS) on Aβ-induced neurotoxicity were investigated both in vitro and in vivo. The in vitro AD model was established in SH-SY5Y via treatment with oligomeric Aβ, and the in vivo AD model was established by intracerebroventricular injection of Aβ to KM mice. The results showed that in vitro, PMHS could ameliorate the inflammation and apoptosis response of SH-SY5Y cells induced by Aβ; in vivo, PMHS could not only improve the cognitive impairment induced by Aβ but also inhibit neuroinflammation and apoptosis in the brain. Furthermore, PMHS lowered the levels of Aβ in the peripheral circulation and brain by improving the phagocytosis function of neutrophils. This is the first report that PMHS enhances the phagocytosis function of neutrophils to alleviate Aβ-induced neurotoxicity. Moreover, our work verified the feasibility of peripheral Aβ clearance for improving neurotoxicity. Conclusively, we believe that PMHS could be developed into neuroprotective drugs for AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.03.079DOI Listing

Publication Analysis

Top Keywords

aβ-induced neurotoxicity
12
heparan sulfate
8
porcine mucosa
8
vitro vivo
8
8
model established
8
aβ vivo
8
induced aβ
8
phagocytosis function
8
function neutrophils
8

Similar Publications

Background: CAR T-cell therapy (CAR-T) is leading to durable responses in patients with cancer but there is concern that cytokine release syndrome (CRS) and neurotoxicity may impact survivors' cognitive function. We assessed long-term cognitive function in CAR-T recipients and examine factors associated with change in cognition over time.

Methods: We assessed perceived cognition (Functional Assessment of Cancer Therapy - Cognition) and neurocognitive performance (standardized neuropsychological battery) in adult patients prior to receiving CAR-T and at 6 month follow-up.

View Article and Find Full Text PDF

Water beads are superabsorbent polymer balls. They were originally marketed for agricultural and decorative applications and are now sold as sensory toys. They can be harmful to children in 2 ways.

View Article and Find Full Text PDF

Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.

View Article and Find Full Text PDF

Neuro-reproductive toxicity and carcinogenicity of 1-bromopropane - studies for evidence-based preventive medicine (EBPM).

J Occup Health

January 2025

Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.

Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.

View Article and Find Full Text PDF

Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!