Walnut oil production waste (WOPW) is a by-product of walnut oil processing. The organic waste is rich in holocellulose and lignin, showing good potential to be converted by thermal process to valuable products. Superheated steam (SHS) torrefaction is a recently proposed thermal process enabling fast and unformal biomass heating, resulting in high-quality solid products as direct fuel. The potential of SHS to torrefy lipids and proteins (being rich in WOPW) is attractive for broader application of SHS torrefaction to upgrade more biomass wastes. SHS torrefaction was studied in this work to upgrade WOPW for solid products with different reaction temperatures (200, 250, 300 °C) and residence times (20, 40, 60 min). The lowest weight yield was 43.64 wt% under the severest treatment of 300 °C and 60 min, accompanied with the highest energy enhancement of 1.34 (reaching HHV of 27.03 MJ/kg). Response surface method is employed to reveal the effects of temperature and residence time. Residence time of 40 min under 300 °C was supposed to be an ideal condition to upgrade WOPW with HHV of 26.68 MJ/kg and in the range of coal from Van Krevelen diagram. Combustion indices (e.g., fuel ratio, combustion index, and volatile ignitability) indicated that the aforementioned torrefied WOPW had favourable properties as co-firing material. On the other hand, combustion behaviours analysis demonstrated that SHS torrefied WOPW could perform well as direct fuel. Aqueous effluent was also condensed and analyzed, where products from lipids and proteins were massively presented, giving an insight into the decomposition of those two constitutes undergoing SHS torrefaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.154649 | DOI Listing |
Environ Pollut
November 2024
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan, 610213, China. Electronic address:
Torrefaction is commonly used to improve biomass properties, applications, and economy. The characteristics and subsequent applications of torrefied biomass are largely contingent on the organic compounds in parent biomass and their evolution during torrefaction. Yet, the evolution of organic compounds in biomass particularly minor components (e.
View Article and Find Full Text PDFSci Total Environ
July 2022
College of Chemical Engineering, Fuzhou University, Fujian 350116, China. Electronic address:
Walnut oil production waste (WOPW) is a by-product of walnut oil processing. The organic waste is rich in holocellulose and lignin, showing good potential to be converted by thermal process to valuable products. Superheated steam (SHS) torrefaction is a recently proposed thermal process enabling fast and unformal biomass heating, resulting in high-quality solid products as direct fuel.
View Article and Find Full Text PDFBioresour Technol
December 2021
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China. Electronic address:
Superheated steam (SHS) was capable of fast and uniformly torrefying heavily loaded biomass. This work detailedly investigated the torrefied biomass in terms of fuel property and combustion behavior. The reactor chamber (300 ml) was fully loaded with pinewood pellets (160 g).
View Article and Find Full Text PDFBioresour Technol
July 2021
Thermochemical Conversion of Biomass Research Group, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
Superheated steam (SHS) has been used as a carrier gas for pressurized steam torrefaction, steam explosion or pyrolysis, but is barely used as a heat source. However, SHS is superior in thermal capacity and heat transfer coefficient resulting in even heating and fast heating rates. Therefore, this work applied SHS as the sole heat source for torrefaction at ambient pressure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!