Mutational processes and nongenetic phenotypic state transitions represent distinct paradigms for understanding acquired resistance to targeted therapies. While ample empirical evidence supports both paradigms, they are typically viewed as mutually exclusive. However, a growing body of evidence points to the multifactorial nature of resistance, where resistant tumor cell phenotypes integrate the influence of multiple mutational and epigenetic changes. This leads to growing calls for a conceptual framework capable of incorporating the effects of genetic and nongenetic mechanisms. Here, we argue that the original Darwinian paradigm centered on the concept of natural selection, rather than its mutation-centric reinterpretation, might provide the optimal backbone for a much-needed synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.trecan.2022.02.004DOI Listing

Publication Analysis

Top Keywords

darwinian paradigm
8
integrating mutational
4
mutational nonmutational
4
nonmutational mechanisms
4
mechanisms acquired
4
acquired therapy
4
therapy resistance
4
resistance darwinian
4
paradigm mutational
4
mutational processes
4

Similar Publications

The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.

View Article and Find Full Text PDF

This paper offers an historical introduction to Pere Alberch's evolutionary thought and his contributions to Evo-Devo, based on his unique approach to experimental teratology. We will take as our point of reference the teratogenic experiments developed by Alberch and Emily A. Gale during the 1980s, aimed at producing monstrous variants of frogs and salamanders.

View Article and Find Full Text PDF

Selection, growth and form. Turing's two biological paths towards intelligent machinery.

Stud Hist Philos Sci

August 2024

Philosophy of Computing Group, Faculty of Administration and Social Sciences, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland.

We inquire into the role of Turing's biological thought in the development of his concept of intelligent machinery. We trace the possible relations between his proto-connectionist notion of 'organising' machines in Turing (1948) on the one hand and his mathematical theory of morphogenesis in developmental biology (1952) on the other. These works were concerned with distinct fields of inquiry and followed distinct paradigms of biological theory, respectively postulating analogues of Darwinian selection in learning and mathematical laws of form in organic pattern formation.

View Article and Find Full Text PDF

The Extended Evolutionary Synthesis (EES) addresses the issues in evolutionary biology which cannot be explained by neo-Darwinian theory. The EES paradigm recognises teleology and agency in living systems, and identifies that organisms can directly affect their evolutionary trajectory in a goal-directed manner, yet the physiological pathways via which this occurs remain unidentified. Here, I propose a physiological pathway via which organisms can alter their genotype and phenotype by making behavioural decisions with respect their activity levels, partitioning of resources either toward growth, defence against disease, or their behavioural response to stressors.

View Article and Find Full Text PDF

The contours of evolution: In defence of Darwin's tree of life paradigm.

Bioessays

May 2024

Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

Both the concept of a Darwinian tree of life (TOL) and the possibility of its accurate reconstruction have been much criticized. Criticisms mostly revolve around the extensive occurrence of lateral gene transfer (LGT), instances of uptake of complete organisms to become organelles (with the associated subsequent gene transfer to the nucleus), as well as the implications of more subtle aspects of the biological species concept. Here we argue that none of these criticisms are sufficient to abandon the valuable TOL concept and the biological realities it captures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!