The section Oleifera (Theaceae) has attracted attention for the high levels of unsaturated fatty acids found in its seeds. Here, we report the chromosome-scale genome of the sect. Oleifera using diploid wild Camellia lanceoleosa with a final size of 3.00 Gb and an N50 scaffold size of 186.43 Mb. Repetitive sequences accounted for 80.63% and were distributed unevenly across the genome. Camellia lanceoleosa underwent a whole-genome duplication event approximately 65 million years ago (65 Mya), prior to the divergence of C. lanceoleosa and Camellia sinensis (approx. 6-7 Mya). Syntenic comparisons of these two species elucidated the genomic rearrangement, appearing to be driven in part by the activity of transposable elements. The expanded and positively selected genes in C. lanceoleosa were significantly enriched in oil biosynthesis, and the expansion of homomeric acetyl-coenzyme A carboxylase (ACCase) genes and the seed-biased expression of genes encoding heteromeric ACCase, diacylglycerol acyltransferase, glyceraldehyde-3-phosphate dehydrogenase and stearoyl-ACP desaturase could be of primary importance for the high oil and oleic acid content found in C. lanceoleosa. Theanine and catechins were present in the leaves of C. lanceoleosa. However, caffeine can not be dectected in the leaves but was abundant in the seeds and roots. The functional and transcriptional divergence of genes encoding SAM-dependent N-methyltransferases may be associated with caffeine accumulation and distribution. Gene expression profiles, structural composition and chromosomal location suggest that the late-acting self-incompatibility of C. lanceoleosa is likely to have favoured a novel mechanism co-occurring with gametophytic self-incompatibility. This study provides valuable resources for quantitative and qualitative improvements and genome assembly of polyploid plants in sect. Oleifera.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.15739 | DOI Listing |
BMC Genomics
July 2024
Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
DNA binding with one finger(Dof) gene family is a class of transcription factors which play an important role on plant growth and development. Genome-wide identification results indicated that there were 45 Dof genes(ColDof) in C.oleifera genome.
View Article and Find Full Text PDFGene
June 2023
College of Life Science, Xinyang Normal University, Xinyang, Henan, China; Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan, China. Electronic address:
Oleosins play essential roles in stabilization of lipid droplets (LDs) and seed oil production. However, evolution of this gene family has not been reported in Theaceae, a large plant family that contains many important tea and oil tea species. In this study, a total of 65 oleosin genes were identified in nine genome-sequenced Theaceae species.
View Article and Find Full Text PDFPlant J
May 2022
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
The section Oleifera (Theaceae) has attracted attention for the high levels of unsaturated fatty acids found in its seeds. Here, we report the chromosome-scale genome of the sect. Oleifera using diploid wild Camellia lanceoleosa with a final size of 3.
View Article and Find Full Text PDFMitochondrial DNA B Resour
November 2021
Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China.
is an important shrub producing edible seed oil, which is widely cultivated in South China. In this study, the complete chloroplast genome was sequenced and analyzed based on the Illumina HiSeq platform. The results showed that the complete chloroplast genome is 157,041 bp with 37.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!