Fibrous material with high strength and large stretchability is an essential component of high-performance wearable electronic devices. Wearable electronic systems require a material that is strong to ensure durability and stability, and a wide range of strain to expand their applications. However, it is still challenging to manufacture fibrous materials with simultaneously high mechanical strength and the tensile property. Herein, the ultra-robust (≈17.6 MPa) and extensible (≈700%) conducting microfibers are developed and demonstrated their applications in fabricating fibrous mechanical sensors. The mechanical sensor shows high sensitivity in detecting strains that have high strain resolution and a large detection range (from 0.0075% to 400%) simultaneously. Moreover, low frequency vibrations between 0 and 40 Hz are also detected, which covers most tremors that occur in the human body. As a further step, a wearable and smart health-monitoring system has been developed using the fibrous mechanical sensor, which is capable of monitoring health-related physiological signals, including muscle movement, body tremor, wrist pulse, respiration, gesture, and six body postures to predict and diagnose diseases, which will promote the wearable telemedicine technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202107511 | DOI Listing |
Sci Rep
January 2025
New materials Technology and Processing Reserearch Center, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
The conversion of diluted CO₂ into high-energy fuels is increasingly central to renewable energy research. This study investigates the efficacy of a Gd₂NiMnO₆ dendritic nanofibrous (DNF) photocatalyst in transforming carbon dioxide to methane through photoreduction. Gd₂NiMnO₆ DNF was found to provide active adsorption sites and control the strand dimensions for metal groups, facilitating the chemical absorption of CO₂.
View Article and Find Full Text PDFActa Biomater
January 2025
The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.
Natural materials are valued for their lightweight properties, high strength, impact resistance, and fracture toughness, often outperforming human-made materials. This paper reviews recent research on biomimetic composites, focusing on how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It explores biological structures such as mollusk shells, bones, and insect exoskeletons that inspire lightweight designs, including honeycomb structures for weight reduction and impact resistance.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
This study proposes a two-scale approach to determining the effective thermal conductivity of fibrous composite materials. The analysis was first carried out at the fiber-interphase level to calculate the effective thermal conductivity of this system, and next at the whole composite structure level. At both scales, the system behavior was analyzed using the finite element method.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
ICAR-Central Institute of Agricultural Engineering Regional Centre, Coimbatore, Tamil Nadu 641007, India.
Starch-based bio plastics, due to their abundance, recyclability, and biodegradability, offer a promising alternative to conventional petrochemical-based plastics. Additives significantly influences the functionality of bioplastics. This study investigates the effects of polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC) at varying concentrations on banana starch-based bioplastic films, using glycerol as a plasticizer.
View Article and Find Full Text PDFPharmaceutics
December 2024
Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China.
: Postoperative abdominal adhesion is a prevalent complication following abdominal surgery, with the incidence of adhesion reaching up to 90%, which may precipitate a range of adverse outcomes. Although fibrous membranes loaded with various anti-inflammatory or other drugs have been proposed for anti-adhesion, most of them suffer from drug-induced adverse effects. : In this study, a lecithin-based electrospun polylactic acid (PLA) nanofibrous membrane (L/P-NM) was developed for the prevention of postoperative abdominal adhesion, utilizing the hydration lubrication theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!