Mycobacterium avium subsp. paratuberculosis (MAP) is a pathogenic bacterium causing the paratuberculosis, chronic and infectious disease common particularly in wild and domestic ruminants. Currently, culture techniques to detect viable MAP are still used most commonly, although these require a long incubation period. Consequently, a faster molecular method for assessing MAP cell viability based on cell membrane integrity was introduced consisting of sample treatment with the intercalation dye propidium monoazide (PMA) followed by quantitative PCR (qPCR). However, the PMA-qPCR assay is complicated by demanding procedures involving work in a darkroom and on ice. In this study, we therefore optimized a viability assay combining sample treatment with palladium (Pd) compounds as an alternative viability marker to PMA, which does not require such laborious procedures, with subsequent qPCR. The optimized Pd-qPCR conditions consisting of 90 min exposure to 30 µM bis(benzonitrile)dichloropalladium(II) or 30 µM palladium(II)acetate at 5 °C and using ultrapure water as a resuspension medium resulted in differences in quantification cycle (Cq) values between treated live and dead MAP cells of 8.5 and 7.9, respectively, corresponding to approximately 2.5 log units. In addition, Pd-qPCR proved to be superior to PMA-qPCR in distinguishing between live and dead MAP cells. The Pd-qPCR viability assay thus has the potential to replace time-consuming culture methods and demanding PMA-qPCR in the detection and quantification of viable MAP cells with possible application in food, feed, clinical and environmental samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8934341PMC
http://dx.doi.org/10.1038/s41598-022-08634-xDOI Listing

Publication Analysis

Top Keywords

viability assay
12
map cells
12
assay combining
8
quantitative pcr
8
detect viable
8
mycobacterium avium
8
avium subsp
8
subsp paratuberculosis
8
viable map
8
sample treatment
8

Similar Publications

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Heteronemin suppresses EGF‑induced proliferation through the PI3K/PD‑L1 signaling pathways in cholangiocarcinoma.

Oncol Rep

March 2025

Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.

Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.

View Article and Find Full Text PDF

Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a common cause of cancer‑related mortality and morbidity worldwide. While iodine‑125 (I) particle brachytherapy has been extensively used in the clinical treatment of various types of cancer, the precise mechanism underlying its effectiveness in treating HCC remains unclear. In the present study, MHCC‑97H cells were treated with I, after which, cell viability and proliferation were assessed using Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine and colony formation assays, cell invasion and migration were evaluated using wound healing and Transwell assays, and cell apoptosis was determined using flow cytometry.

View Article and Find Full Text PDF

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!