Annealing Temperature-Dependent Surface-Enhanced Raman spectroscopy on MoS-Covered silver nanoparticle array.

Spectrochim Acta A Mol Biomol Spectrosc

Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology (Beijing University of Technology), Ministry of Education, Beijing 100124, China; Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing 100124, China; Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing 100124, China. Electronic address:

Published: July 2022

Surface-enhanced Raman spectroscopy (SERS) is an ultra-sensitive analytical tool that can effectively detect and identify molecules by their unique vibrational fingerprints. Development of SERS substrates with good stability, high sensitivity and reproducibility is still a big challenge in practical applications. Recently, 2D materials/metallic hybrid SERS substrates provide a new prospect to improve the SERS performance. Here, we obtain a monolayer MoS covered silver nanoparticle (AgNP) array as a high-performance SERS substrate. Annealing temperature-dependent SERS signals on the hybrid substrate have been explored. The optimum SERS performance was obtained at 290 ℃ (the detection limit of 10 M for Rhodamine 6G and the corresponding SERS enhancement factor of 8.3 × 10), which is attributed to the better contact between AgNPs and MoS and the uniform AgNPs with appropriate particle sizes. The prepared MoS/AgNPs hybrid substrates also have been utilized to detect various molecules, which demonstrates a great potential for applications in food safety and biochemical environmental detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121159DOI Listing

Publication Analysis

Top Keywords

annealing temperature-dependent
8
surface-enhanced raman
8
raman spectroscopy
8
silver nanoparticle
8
sers
8
sers substrates
8
sers performance
8
temperature-dependent surface-enhanced
4
spectroscopy mos-covered
4
mos-covered silver
4

Similar Publications

Sc-doped GeTe thin films prepared by radio-frequency magnetron sputtering.

Sci Rep

January 2025

Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.

Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.

View Article and Find Full Text PDF

Switchable 3D Photonic Crystals Based on the Insulator-to-Metal Transition in VO.

ACS Appl Mater Interfaces

December 2024

Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany.

Article Synopsis
  • Photonic crystals (PhCs) are optical structures that manipulate light by creating a photonic band gap (PBG) through their dielectric properties, traditionally fixed and static.
  • Recent advancements target switchable PhCs, especially using vanadium dioxide (VO), which changes its state and optical properties near room temperature, allowing for a reversible adjustment of the PBG.
  • This research introduces a fabrication method for 3D switchable VO photonic crystals, demonstrating significant control over PBG at specific wavelengths in the near-infrared region, paving the way for versatile photonic devices that can adapt their functionalities.
View Article and Find Full Text PDF

Stereochemical Shape Morphing in Diels-Alder Polymer Networks.

Small

January 2025

Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA.

The intrinsic reversibility of dynamic covalent bonding, such as the furan-maleimide Diels-Alder (DA) cycloaddition reactions, enables reprocessable, self-healing polymer materials that can be reconfigured via the mechanism of solid-state plasticity. In this work, the temperature-dependent exchange rates of stereochemically distinct endo and exo DA bonds are leveraged to achieve tunable, temperature- and stress-activated shape morphing in Diels-Alder polymer (DAP) networks. Through thermal annealing, ≈35% of endo DA isomers are converted in neat DAP networks to the thermodynamically favored exo form, achieving ≈97% exo after complete annealing at 60 °C.

View Article and Find Full Text PDF

Reproducibility of Al/AlO/Al Josephson junctions is a challenge for scaling up superconducting quantum processors. The frequency uncertainty of the transmon qubits arising from the fabrication process is attributed to deviations in the Josephson junction microstructure and electrical properties. Here, we present a solution for this problem using the post-fabrication Josephson junction thermal annealing process.

View Article and Find Full Text PDF

Dynamics of magnetic inhomogeneity in LaCoMnO films probed by Raman spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Centro de Ciências de Bacabal, Bacabal, Maranhão 65700-000, Brazil. Electronic address:

We report the dynamic effects of magnetic inhomogeneity on the temperature evolution of the Raman modes in polycrystalline LaCoMnO (LCMO) films. The LCMO films were obtained via chemical solution deposition and annealed at different temperatures, 700, 800 and 900 °C. Temperature-dependent Raman spectroscopic studies uncover anomalous phonon energy behaviors, associated with strong spin-phonon couplings revealed even at ambient conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!