Background: Advanced therapies in neurosurgery, such as deep brain stimulation (DBS), would benefit from improved patient education materials. Three-dimensional (3D) printed anatomical models represent a recent development for improving patient education for neurosurgical procedures.
Methods: In this study, 40 patients undergoing DBS surgery consultation were randomly assigned to 1 of 2 groups: an experimental group, which received a demonstration of DBS therapeutic neuroanatomical targets in a 3D printed brain model plus standard patient education (PE), or a control group, which received standard PE alone.
Results: Patients in the DBS model plus PE group showed a significant increase in patient confidence and understanding of the brain structures targeted during a DBS procedure compared with patients in the PE-only group (P < 0.01). There was no difference in perceived risk, comfort, or anxiety related to the procedure.
Conclusions: In the first randomized controlled study to our knowledge of 3D printed models for DBS consultation, our results demonstrate that patients had improved understanding of their therapy with the models. However, the models alone did not affect risk evaluation or comfort with surgery. A 3D printed brain model may help improve patient understanding of DBS surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2022.03.049 | DOI Listing |
ACS Sens
January 2025
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
The simultaneous detection of electroencephalography (EEG) signals and neurotransmitter levels plays an important role as biomarkers for the assessment and monitoring of emotions and cognition. This paper describes the development of boron and nitrogen codoped graphene-diamond (BNGrD) microelectrodes with a diameter of only 200 μm for sensing EEG signals and dopamine (DA) levels, which have been developed for the first time. The optimized BNGrD microelectrode responded sensitively to both EEG and DA signals, with a signal-to-noise ratio of 9 dB for spontaneous EEG signals and a limit of detection as low as 124 nM for DA.
View Article and Find Full Text PDFJ Child Lang
January 2025
State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
Although family factors are considered important for children's language acquisition, the evidence comes primarily from affluent societies. Thus, this study aimed to examine the relations between family factors (family's socioeconomic status [SES], home literacy activities, access to print resources, and parental beliefs) and children's vocabulary knowledge in both urban and rural settings in China. Data from 366 children (urban group: 109, 4.
View Article and Find Full Text PDFJ Integr Med
January 2025
Ministry of Ayush, Ayush Bhawan, New Delhi 110023, India.
Yoga is a therapeutic practice renowned for its multifaceted benefits across the body's systems. Its positive impact spans the physical, mental and emotional realms, fostering harmony and well-being. Through a combination of postures, breathing techniques and meditation, yoga offers profound effects, enhancing flexibility, strength and balance while simultaneously promoting relaxation and reducing stress.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Introduction: Magnetic resonance imaging (MRI) is essential for brain imaging, but conventional methods rely on qualitative contrast, are time-intensive, and prone to variability. Magnetic resonance finger printing (MRF) addresses these limitations by enabling fast, simultaneous mapping of multiple tissue properties like T1, T2. Using dynamic acquisition parameters and a precomputed signal dictionary, MRF provides robust, qualitative maps, improving diagnostic precision and expanding clinical and research applications in brain imaging.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
To explore techniques, advantages and disadvantages of 3D Slicer reconstruction and 3D printing localization technology combined with transcranial neuroendoscopy in ventriculoperitoneal shunt surgery. Retrospective analysis of clinical data of patients with hydrocephalus treated by ventriculoperitoneal shunt surgery using 3D Slicer reconstruction and 3D printing positioning technology combined with transcranial neuroendoscopy in our hospital from October 2021 to March 2023. A total of 33 patients with complete data were collected, including 19 males and 14 females, aged 10-81 years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!