Epithelial folding depends on mechanical properties of both epithelial cells and underlying basement membrane (BM). While folding is essential for tissue morphogenesis and functions, it is difficult to recapitulate features of a growing epithelial monolayer for in vitro modeling due to lack of in vivo like BM. Herein, we report a method to overcome this difficulty by culturing on an artificial basement membrane (ABM) the primordial lung progenitors (PLPs) from human induced pluripotent stem cells (hiPSCs). The ABM was achieved by self-assembling collagen IV and laminin, the two principal natural BM proteins, in the pores of a monolayer of crosslinked gelatin nanofibers deposited on a honeycomb micro-frame. The hiPSC-PLPs were seeded on the ABM for alveolar differentiation under submerged and air-liquid interface culture conditions. As results, the forces generated by the growing epithelial monolayer led to a geometry-dependent folding. Analysis of strain distribution in a clamped membrane provided instrumental insights into some of the observed phenomena. Moreover, the forces generated by the growing epithelial layer led to a high-level expression of surfactant protein C and a high percentage of aquaporin 5 positive cells compared with the results obtained with a nanofiber-covered bulk substrate. Thus, this work demonstrated the importance of recapitulating natural BM for advanced epithelial modeling. STATEMENT OF SIGNIFICANCE: The effort to develop in vitro epithelial models has not been entirely successful to date, due to lack of in vivo like basement membrane (BM). This lack has been overcome by using a microfabricated dense thin and pliable sheet like structure made of natural BM proteins. With such an artificial BM, alveolar epithelial deformation and folding could be studied and date could be correlated to numerical analyses of a plate theory. This method is simple and effective, enabling further developments in epithelial tissue modeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2022.03.022 | DOI Listing |
Front Immunol
January 2025
Department of Immunodermatology, National Medical Institute of the Ministry of the Interior and Administration, Warsaw, Masovian, Poland.
Linear IgA bullous dermatosis (LABD) is a rare subepidermal blistering disorder characterized by the presence of linear IgA deposits at the basement membrane zone (BMZ) by direct immunofluorescence (DIF). This entity was first described by Chorzelski and Jablonska from Warsaw Center of Bullous Diseases, Poland. The disease affects children and adults, whereby they differ in terms of clinical picture and course.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background/purpose: Oral lichen planus (OLP) is a chronic inflammatory disorder characterized by basement membrane disruption, which plays a crucial role in its pathogenesis. Matrix metalloproteinases (MMPs), a group of proteolytic enzymes, contribute to the degradation of the basement membrane. The specific MMPs secreted by keratinocytes in OLP lesions and relevant regulatory mechanisms are not fully understood.
View Article and Find Full Text PDFMed J Armed Forces India
August 2022
Professor & Head (Dermatology), DY Patil Medical College & Research Centre, Pune, India.
Background: Autoimmune bullous disorder (AIBD) is a diverse group of blistering dermatoses that affects the skin and mucous membrane, characterized by the formation of autoantibodies against the desmosomal glycoproteins and adhesion molecular components of the basement membrane zone. Various immunoassay techniques for serological diagnosis are Direct Immunofluorescence (DIF), Indirect Immunofluorescence (IIF), Enzyme Linked Immunosorbent Assay (ELISA) and immunoblotting. Quantitative ELISA titer can also be used to monitor the disease activity and response to treatment.
View Article and Find Full Text PDFExp Physiol
January 2025
Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
The mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!