A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fascicular elastin within tendon contributes to the magnitude and modulus gradient of the elastic stress response across tendon type and species. | LitMetric

Fascicular elastin within tendon contributes to the magnitude and modulus gradient of the elastic stress response across tendon type and species.

Acta Biomater

Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, MSC: 1185-208-125, St. Louis, MO 63130, United States; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, United States; Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, , United States. Electronic address:

Published: June 2023

AI Article Synopsis

  • Elastin is a key component of elastic fibers that affects tendon mechanics, but differences across species and tendon functions, particularly in humans, are not well understood.
  • Tendons meant for energy storage contain more elastin than those serving a positional function, with human tendons exhibiting about twice the elastin content of other species.
  • Mechanical testing revealed that elastin degradation decreases stress values and alters the stress-strain curve, indicating that fascicular elastic fibers play a crucial role in tendon mechanics, especially in human and energy-storing tendons.

Article Abstract

Elastin, the main component of elastic fibers, has been demonstrated to significantly influence tendon mechanics using both elastin degradation studies and elastinopathic mouse models. However, it remains unclear how prior results differ between species and functionally distinct tendons and, in particular, how results translate to human tendon. Differences in function between fascicular and interfascicular elastin are also yet to be fully elucidated. Therefore, this study evaluated the quantity, structure, and mechanical contribution of elastin in functionally distinct tendons across species. Tendons with an energy-storing function had slightly more elastin content than tendons with a positional function, and human tendon had at least twice the elastin content of other species. While distinctions in the organization of elastic fibers between fascicles and the interfascicular matrix were observed, differences in structural arrangement of the elastin network between species and tendon type were limited. Mechanical testing paired with enzyme-induced elastin degradation was used to evaluate the contribution of elastin to tendon mechanics. Across all tendons, elastin degradation affected the elastic stress response by decreasing stress values while increasing the modulus gradient of the stress-strain curve. Only the contributions of elastin to viscoelastic properties varied between tendon type and species, with human tendon and energy-storing tendon being more affected. These data suggest that fascicular elastic fibers contribute to the tensile mechanical response of tendon, likely by regulating collagen engagement under load. Results add to prior findings and provide evidence for a more mechanistic understanding of the role of elastic fibers in tendon. STATEMENT OF SIGNIFICANCE: Elastin has previously been shown to influence the mechanical properties of tendon, and degraded or abnormal elastin networks caused by aging or disease may contribute to pain and an increased risk of injury. However, prior work has not fully determined how elastin contributes differently to tendons with varying functional demands, as well as within distinct regions of tendon. This study determined the effects of elastin degradation on the tensile elastic and viscoelastic responses of tendons with varying functional demands, hierarchical structures, and elastin content. Moreover, volumetric imaging and protein quantification were used to thoroughly characterize the elastin network in each distinct tendon. The results presented herein can inform tendon-specific strategies to maintain or restore native properties in elastin-degraded tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.03.025DOI Listing

Publication Analysis

Top Keywords

elastin
17
elastic fibers
16
elastin degradation
16
tendon
15
tendon type
12
human tendon
12
elastin content
12
elastin tendon
8
modulus gradient
8
elastic stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!