RNA sequencing reveals perivascular adipose tissue plasticity in response to angiotensin II.

Pharmacol Res

Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States. Electronic address:

Published: April 2022

AI Article Synopsis

  • Perivascular adipose tissue (PVAT) surrounds blood vessels and has a critical role in vascular health, showing regional differences that affect blood vessel function.
  • This study examined the effects of Angiotensin II (Ang II) on three different regions of aortic PVAT: ascending thoracic, descending thoracic, and abdominal, noting significant differences in gene expression and inflammatory responses among these areas.
  • The findings revealed that abdominal PVAT differs greatly from the other regions, showing reduced oxidative phosphorylation and increased inflammation, while a transgenic mouse model with enhanced brown adipose tissue characteristics in PVAT mitigated the harmful effects of Ang II.

Article Abstract

Most blood vessels are surrounded by perivascular adipose tissue (PVAT), which is a unique adipose tissue that plays critical roles in vascular physiology and pathophysiology. PVAT displays regional differences that impact vascular homeostasis. Angiotensin II (Ang II) is the main biologically active component of the renin-angiotensin-aldosterone system (RAAS), which has been extensively studied in vascular biology. However, the effects of Ang II on PVAT are less explored and remain to be elucidated. In this study, we systematically investigated the regional heterogeneity of three portions of aortic PVAT, i.e., ascending thoracic aortic PVAT (ATA-PVAT), descending thoracic aortic PVAT (DTA-PVAT) and abdominal aortic PVAT (AA-PVAT), and their responses to 7-day Ang II infusion using RNA sequencing. We found that AA-PVAT is clearly distinguished from both ATA-PVAT and DTA-PVAT, with significantly down-regulated oxidative phosphorylation and up-regulated inflammatory response pathways. Furthermore, AA-PVAT expresses lower levels of brown adipocyte marker genes, such as Ucp1, Cidea, Cox8b, Dio2 and Pgc1α, but expresses higher levels of proinflammatory genes, such as Ccl2, Il1β and Tnfα, and components of the RAAS, including Agt, Ace and Agtr1a. Ang II infusion significantly down-regulated oxidative phosphorylation in all regions of aortic PVAT and significantly up-regulated inflammatory response specifically in ATA-PVAT and DTA-PVAT. Moreover, ATA-PVAT was most responsive to Ang II induced inflammation. We further used CDGSH iron-sulfur domain-containing protein 1 (a.k.a. mitoNEET) transgenic mice that exhibit enhanced brown adipose tissue (BAT)-like phenotype in aortic PVAT, as indicated by elevated expression levels of brown adipocyte marker genes, and found that the enhanced BAT-like phenotype of aortic PVAT could counterbalance Ang II induced inflammatory and oxidative effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2022.106183DOI Listing

Publication Analysis

Top Keywords

aortic pvat
28
adipose tissue
16
pvat
10
rna sequencing
8
perivascular adipose
8
thoracic aortic
8
ang infusion
8
ata-pvat dta-pvat
8
down-regulated oxidative
8
oxidative phosphorylation
8

Similar Publications

We investigated the sex-dependent effects of inflammatory responses in visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT), as well as hematological status, in relation to cardiovascular disorders associated with prediabetes. Using male and female hereditary hypertriglyceridemic (HHTg) rats-a nonobese prediabetic model featuring dyslipidemia, hepatic steatosis, and insulin resistance-we found that HHTg females exhibited more pronounced hypertriglyceridemia than males, while HHTg males had higher non-fasting glucose levels. Additionally, HHTg females had higher platelet counts, larger platelet volumes, and lower antithrombin inhibitory activity.

View Article and Find Full Text PDF

Background And Purpose: Perivascular adipose tissues (PVATs) play a critical role in modulating vascular homeostasis and protecting against cardiovascular dysfunction-mediated blood pressure dysregulation. We demonstrated that the activating transcription factor-3 (Atf3) gene in the PVAT is crucial for improving vascular wall tension abnormalities; however, its protective mechanism remains unclear. Herein, we aim to determine whether ATF3 regulates PVAT-derived relaxing factor (PVDRF) biosynthesis and if its secretion contributes to vasorelaxation.

View Article and Find Full Text PDF

The adipose tissue surrounding blood vessels is known as perivascular adipose tissue (PVAT), which represents a distinct ectopic fat depot that adheres to the majority of the vasculature. In recent years, owing to its unique location and function, PVAT has been regarded as a new type of adipose tissue distinct from traditional visceral fat. It releases adipokines with vasoconstrictive functions, which regulate vascular function through paracrine and endocrine mechanisms.

View Article and Find Full Text PDF

Background: The activity of perivascular adipose tissue (PVAT), a specific deposit of adipose tissue surrounding blood vessels, could contribute to sex differences in vascular tone control, particularly in dyslipidemic disorders; however, the mutual associations remain unclear. This study aimed to evaluate the relationships among sex, PVAT and vascular function in Wistar and hereditary hypertriglyceridemic (HTG) rats. Vasoactive responses of the isolated thoracic aorta with preserved or removed PVAT were compared in adult male and female Wistar and HTG rats, and the roles of nitric oxide (NO), hydrogen sulfide (HS), cyclooxygenase (COX) and inflammatory signaling in vascular function were monitored in females.

View Article and Find Full Text PDF

Short-term preoperative methionine restriction (MetR) is a promising translatable strategy to mitigate surgical injury response. However, its application to improve post-interventional vascular remodeling remains underexplored. Here we find that MetR protects from arterial intimal hyperplasia in a focal stenosis model and pathologic vascular remodeling following vein graft surgery in male mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!