Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis.

Sci Total Environ

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. Electronic address:

Published: July 2022

Microplastics may be potential vectors for environmental contaminants such as heavy metals in the aquatic ecosystem due to their highly hydrophobic surfaces and fugacity property. To investigate the combined effects of microplastics with Pb, we exposed juvenile Chinese mitten crabs Eriocheir sinensis to different Pb concentrations (0, 5 and 50 μg/L) combined with microplastics (0 and 400 μg/L) for 21 days to determine the Pb bioaccumulation, oxidative stress, lipid anabolism, and histopathology of hepatopancreas. In general, the results showed that compared to single Pb exposure, the combination of MPs and Pb significantly increased the bioaccumulation of Pb, activities/content of antioxidant biomarkers and lipid metabolism enzymes, and liver injury parameters in crabs, indicating MPs are potential vector of heavy metals and co-exposure exerts more severe effects on crabs. This study provides the insights into the oxidative defense and preliminary lipid anabolism of economic crustaceans in response to combined stress of Pb and MPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.154586DOI Listing

Publication Analysis

Top Keywords

chinese mitten
8
eriocheir sinensis
8
heavy metals
8
lipid anabolism
8
polystyrene microplastics
4
microplastics increase
4
increase bioaccumulation
4
bioaccumulation health
4
health damage
4
damage chinese
4

Similar Publications

Mitigating LPS-induced stress in Chinese mitten crab (Eriocheir sinensis) with P4' peptide-bearing Bacillus subtilis.

Fish Shellfish Immunol

January 2025

Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China. Electronic address:

The Chinese mitten crab (Eriocheir sinensis) is an important component in Chinese aquaculture. Due to its lacking adaptive immune system as a crustacean, it exhibits poor tolerance to environmental stresses, particularly the deleterious impact of lipopolysaccharide (LPS) from pathogenic bacteria during E. sinensis culture.

View Article and Find Full Text PDF

Potential Strategies Applied by to Survive the Immunity of Its Crustacean Hosts.

Pathogens

January 2025

Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

is the specific pathogen for "milky disease" in the Chinese mitten crab (), accounting for huge losses to the industry. And yet, there is no precise study describing the pathogenesis of , largely hindering the development of novel control methods against its causing diseases. Here, we compared the transcriptomes of cells collected from a control group (cultured without hemocytes) and a treatment group (cultured with hemocytes), using RNA sequencing.

View Article and Find Full Text PDF

Molecular Mechanisms Underlying Substance Transport, Signal Transduction, and Anti-Stress Regulation, as Well as Anti-Alkaline Regulation via in the Cerebral Ganglion of Chinese Mitten Crab Under Alkaline Stress.

Biology (Basel)

January 2025

Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China.

(1) Background: Global climate change is intensifying, and the vigorous development and utilization of saline-alkali land is of great significance. As an important economic aquatic species in the context of saline-alkali aquaculture, it is highly significant to explore the regulatory mechanisms of under alkaline conditions. In particular, the brain (cerebral ganglion for crustaceans) serves as a vital regulatory organ in response to environmental stress; (2) Methods: In this study, a comparative transcriptome approach was employed to investigate the key regulatory genes and molecular regulatory mechanisms in the cerebral ganglion of under alkaline stress.

View Article and Find Full Text PDF

Quantitative DIA-based proteomics unveils ribosomal biogenesis pathways associated with increased final size in three-year-old Chinese mitten crab (Eriocheir sinensis).

BMC Genomics

January 2025

Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China.

Background: Temperature is a key determinant of ectotherms distribution and growth. During the Eriocheir sinensis breeding process, it was observed that crabs in high latitudes and altitude areas with low temperatures undergo diapause, they would overwinter and continue to grow into three-year-old individuals, whose final body size is significantly larger than the normal two-year-old crabs. The hepatopancreas is responsible for maintaining the nutritional balance and energy required for the crab survival.

View Article and Find Full Text PDF

Climate warming and frequent incidents of extreme high temperatures are serious global concerns. Heat stress induced by high temperature has many adverse effects on animal physiology, especially in aquatic poikilotherms. Chinese mitten crab (Eriocheir sinensis) is sensitive to high temperatures, this study evaluated the harmful effects of heat stress on the neurotoxicity, intestinal health, microbial diversity, and metabolite profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!