Semi-arid urban environments are undergoing an increase in both average air temperatures and in the frequency and intensity of extreme heat events. Within cities, different composition and densities of urban landcovers (ULC) influence local air temperatures, either mitigating or increasing heat. Currently, understanding how combinations of ULC influence air temperature at the block to neighborhood scale is necessary for heat mitigation plans, and yet limited due to the complexities integrating high-resolution ULC with spatial and temporally high-resolution microclimate data. We quantify how ULC influences air temperature at 60 m resolution for day and nighttime climate normals and extreme heat conditions by integrating microclimate sensor data sensor and high-resolution (1 m) ULC for Denver, Colorado's urban core. We derive ULC drivers of air temperature using a structural equation model, then use a random forest algorithm to predict air temperatures for 30-year climate normals and an extreme heat condition. We find that, in conjunction with other ULC, urban tree canopy reduces daytime air temperatures (-0.026 °C per % cover), and the combination of impervious surfaces and buildings increases daytime air temperature (0.021 °C per % cover). Compared to daytime hours, nighttime irrigated turf temperature cooling effects are increased from being non-significant to -0.022 °C per % cover, while tree canopy effects are reduced from -0.026 °C during the day to -0.016 °C at night. Overall, ULC drives ~17% and 25% of local air temperature during the day and night, respectively. ULC influence on daytime air temperatures is altered in extreme heat events, both depending on the ULC type and time of day. Our findings inform urban planners seeking to identify potential hot and cool spots within a semi-arid city and mitigate high urban air temperatures through using ULC within larger urban climate mitigation strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.154589 | DOI Listing |
Int J Biol Macromol
January 2025
School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 43200, China.
Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.
View Article and Find Full Text PDFEnviron Int
January 2025
Swiss Tropical and Public Health Institute, Allschwil, Switzerland; Department of Public Health, University of Basel, Basel, Switzerland. Electronic address:
Background: The independent and interrelated long-term effects of the exposome such as air pollution, greenness, and ambient temperature on lung function are not well understood, yet relevant in the light of climate change.
Methods: Pre-bronchodilation FEV1 from five mature birth cohorts (N = 4724) and three adult cohorts (N = 6052) from five European countries were used to assess cross-sectional associations with air pollution, greenness, and ambient temperature, assigned to their residential address. All two-way interactions and square terms were a priori included in building the final elastic net regression model.
Sci Total Environ
January 2025
Center for Marine Sensors, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26382 Wilhelmshaven, Germany.
Microplastics (MP) are known to be ubiquitous. The pathways and fate of these contaminants in the marine environment are receiving increasing attention, but still knowledge gaps exist. In particular, the link between mass-based MP quantification and oceanographic parameters is often lacking.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Mechanical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram, India.
Globally, domestic refrigerators account for over 13% of the total energy consumption in residential buildings. The brazed plate water-cooled condenser (BPWCC) is compact in size and an attractive option to reduce the energy consumption of refrigerators using domestic water tanks. This study evaluated the performance of a household refrigerator with a secondary refrigerant calorimeter and BPWCC, using an appropriate experimental setup.
View Article and Find Full Text PDFEnviron Manage
January 2025
School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, 4111, Australia.
Street and park trees often endure harsher conditions, including increased temperatures and drier soil and air, than those found in urban or natural forests. These conditions can lead to shorter lifespans and a greater vulnerability to dieback. This literature review aimed to identify confirmed causes of street and park tree dieback in urban areas from around the world.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!