A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Establishment of a nomogram model for predicting adverse outcomes in advanced-age pregnant women with preterm preeclampsia. | LitMetric

Aim: To establish a model for predicting adverse outcomes in advanced-age pregnant women with preterm preeclampsia in China.

Methods: We retrospectively collected the medical records of 896 pregnant women with preterm preeclampsia who were older than 35 years and delivered at the Affiliated Hospital of Qingdao University from June 2018 to December 2020. The pregnant women were divided into an adverse outcome group and a non-adverse outcome group according to the occurrence of adverse outcomes. The data were divided into a training set and a verification set at a ratio of 8:2. A nomogram model was developed according to a binary logistic regression model created to predict the adverse outcomes in advanced-age pregnant women with preterm preeclampsia. ROC curves and their AUCs were used to evaluate the predictive ability of the model. The model was internally verified by using 1000 bootstrap samples, and a calibration diagram was drawn.

Results: Binary logistic regression analysis showed that platelet count (PLT), uric acid (UA), blood urea nitrogen (BUN), prothrombin time (PT), and lactate dehydrogenase (LDH) were the factors that independently influenced adverse outcomes (P < 0.05). The AUCs of the internal and external verification of the model were 0.788 (95% CI: 0.737 ~ 0.764) and 0.742 (95% CI: 0.565 ~ 0.847), respectively. The calibration curve was close to the diagonal.

Conclusions: The model we constructed can accurately predict the risk of adverse outcomes of pregnant women of advanced age with preterm preeclampsia, providing corresponding guidance and serving as a basis for preventing adverse outcomes and improving clinical treatment and maternal and infant prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8933958PMC
http://dx.doi.org/10.1186/s12884-022-04537-xDOI Listing

Publication Analysis

Top Keywords

adverse outcomes
20
pregnant women
20
women preterm
16
preterm preeclampsia
16
outcomes advanced-age
12
advanced-age pregnant
12
nomogram model
8
model predicting
8
predicting adverse
8
outcome group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!