A novel series of 32 sulfonamide containing quinolines (5a-j, 7a-k and 9a-k) were synthesized using tail approach and assayed for their carbonic anhydrase inhibitory potency against four human (h) carbonic anhydrase (CA) isoforms hCA I, II, IX and XII. Most of these newly synthesized compounds exhibited interesting inhibition potency against hCA I, II, IX and XII, in the nanomolar range with some derivatives being more potent than the standard drug acetazolamide (AAZ). The most effective ones on hCA I were 9b (91.8 nM), on hCA II: 5b (7.1 nM), 9c (9.6 nM) and on hCA IX: 5b (6.5 nM), 5g (21.4 nM), 5i (9.1 nM), 9a (22.8 nM), 9b (9.7 nM). Compounds 5h (8.8 nM), 7a (9.6 nM), 9d (6.9 nM), 9e (6.7 nM) were found highly effective against hCA XII. These 4-functionalized benzenesulfonamides (5a-5j, 9a-9k) were found to be more potent than the corresponding 3-functionalized derivatives (7a-k). These compounds may emerge as potential leads for the development of isoform selective hCA IX and XII inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114247DOI Listing

Publication Analysis

Top Keywords

hca xii
16
isoform selective
8
human carbonic
8
carbonic anhydrase
8
effective hca
8
hca
7
exploration 2-phenylquinoline-4-carboxamide
4
2-phenylquinoline-4-carboxamide linked
4
linked benzene
4
benzene sulfonamide
4

Similar Publications

Aim: Human carbonic anhydrases (hCAs) are involved in many physiological processes including respiration, pH control, ion transport, bone resorption, and gastric fluid secretion. Recently, CA IX and CA XII have been studied for their role in cancer diseases, motivating the design of inhibitors of these isoforms.

Material And Method: Here, we used the tail approach to design a new series of monoaryl () and bicyclic () benzensulfonamide derivatives CA IX and CA XII inhibitors.

View Article and Find Full Text PDF

The present study aims to create spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide derivatives with anticancer activities. The in vitro anticancer evaluation showed that only the novel spiro-acenaphthylene tethered-[1,3,4]-thiadiazole (compound ) exhibited significant anticancer efficacy as a selective inhibitor of tumor-associated isoforms of carbonic anhydrase. Compound demonstrated considerable efficacy against the renal RXF393, colon HT29, and melanoma LOX IMVI cancer cell lines, with IC values of 7.

View Article and Find Full Text PDF

Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase CA I, CA II, CA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the CA I isoform), 7f > 7b > 7c (against the CA II isoform), 7c > 7g > 7a > 7b (against the CA IX isoform), and 7d > 7c > 7g > 7f (against the CA XII isoform).

View Article and Find Full Text PDF

This study is focused on the design, synthesis, and evaluation of some sulfonamide derivatives for their inhibitory effects on human carbonic anhydrase (hCA) enzymes I, II, IX, and XII as well as for their antioxidant activity. The purity of the synthesized molecules was confirmed by the HPLC purity analysis and was found in the range of 93%-100%. The inhibition constant (K) against hCA I ranged from 0.

View Article and Find Full Text PDF

Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!