Microplastics (MPs) and nanoplastics (NPs), as emerging pollutants, are frequently detected in wastewater treatment plants. However, studies comparing the effects of MPs versus NPs on nitrogen removal by activated sludge are rarely reported. Here, the responses of nitrogen removal performance, microbial community and functional genes to MPs and NPs in sequencing batch reactors were investigated. Results revealed that MPs (10 and 1000 μg/L) had no effects on nitrogen removal. While upon exposure to NPs, although low concentration (10 μg/L) of NPs showed no remarkable influence on nitrogen removal, high level (1000 μg/L) of NPs decreased NH-N removal efficiency by 24.48% and caused accumulation of NO-N and NO-N. These inhibitory probably due to the acute toxicity of NPs to activated sludge, which was reflected by the increasing reactive oxygen species generation and lactate dehydrogenase release. The toxic effects of NPs further declined the relative abundance of nitrifiers (e.g., Nitrospira) and denitrifiers (e.g., Dechloromonas). These negative effects, accompanied by a decrease in abundance of amoA and nxrA genes related to nitrification (30.01% and 65.24% of control) and narG, nirK and nirS genes associated with denitrification (78.59%, 61.39%, and 86.17% of control), directly illustrated the attenuate phenomenon observed in nitrogen removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.128715 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!