Traditional detection of aquatic invasive species via morphological identification is often time-consuming and can require a high level of taxonomic expertise, leading to delayed mitigation responses. Environmental DNA (eDNA) detection approaches of multiple species using Illumina-based sequencing technology have been used to overcome these hindrances, but sample processing is often lengthy. More recently, portable nanopore sequencing technology has become available, which has the potential to make molecular detection of invasive species more widely accessible and substantially decrease sample turnaround times. However, nanopore-sequenced reads have a much higher error rate than those produced by Illumina platforms, which has so far hindered the adoption of this technology. We provide a detailed laboratory protocol and bioinformatic tools (msi package) to increase the reliability of nanopore sequencing to detect invasive species, and we test its application using invasive bivalves while comparing it with Illumina-based sequencing. We sampled water from sites with pre-existing bivalve occurrence and abundance data, and contrasting bivalve communities, in Italy and Portugal. Samples were extracted, amplified, and sequenced by the two platforms. The mean agreement between sequencing methods was 69% and the difference between methods was nonsignificant. The lack of detections of some species at some sites could be explained by their known low abundances. This is the first reported use of MinION to detect aquatic invasive species from eDNA samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.13610 | DOI Listing |
R Soc Open Sci
January 2025
Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085 Langenargen, Germany.
Adaptive divergence and increased genetic differentiation among populations can lead to reproductive isolation. In Lake Constance, Germany, a population of invasive three-spined stickleback () is currently diverging into littoral and pelagic ecotypes, which both nest in the littoral zone. We hypothesized that assortative mating behaviour contributes to reproductive isolation between these ecotypes and performed a behavioural experiment in which females could choose between two nest-guarding males.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Centre for Molecular Biodiversity Research, Bonn, Germany.
Objective: Fin clipping is the standard DNA sampling technique for whole genome sequencing (WGS) of small fish. The collection of fin clips requires anaesthesia or even euthanisation of the individual. Swabbing may be a less invasive, non-lethal alternative to fin-clipping.
View Article and Find Full Text PDFSci Rep
January 2025
Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (CONICET - INTA), Modesta Victoria N°4450, San Carlos de Bariloche, Río Negro, 8400, Argentina.
During the mating season, reproductive individuals of numerous insect species gather in rendezvous areas, which increases mating opportunities. Male hymenopterans often have to move considerable distances during a particular season, searching or waiting for receptive females. Such behavior is likely driven by a complex combination of individual and species-specific traits, environmental influence, and landscape cues.
View Article and Find Full Text PDFMed Mycol
January 2025
Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye.
Incidence of Candida species increased in critically ill COVID-19 patients in intensive care units. This study aimed to investigate the impact of the COVID-19 pandemic on antifungal consumption and Candida species distribution in bloodstream infections. We observed that a significant increase in non-albicans Candida species cases (p = 0.
View Article and Find Full Text PDFJ Invertebr Pathol
January 2025
Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET-Universidad Nacional de Mar del Plata, Centro de Asociación Simple CIC-PBA, Juan B. Justo 2550, 7600 Mar del Plata, Buenos Aires Province, Argentina.
Pomacea canaliculata is a highly successful invasive snail that shapes freshwater communities in both native and invaded habitats. We studied its digenean parasites from three freshwater bodies in its native distribution area in Buenos Aires Province, Argentina. An integrated approach was used to determine and describe the larval stages of digenean, including morphological, molecular, and histopathology analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!