Long-term and short-term exposure to carbon nanoparticles (CNPs) can affect fetal development and subsequent adverse outcomes including preterm delivery, intrauterine growth restriction, low birth weight, increased health risk linked to cardiovascular, respiratory and nervous systems in adulthood. The adverse developmental outcomes of CNPs were well known, but the underlying mechanisms remain unresolved. In this study, zebrafish embryos were treated with CNPs of 50,100,200 μg/mL and the toxic effects were observed. Using the RNA-seq analysis approach, we examined the effects of CNPs (200 μg/mL) on gene expression in zebrafish embryos exposed from 4 to 96 h-post-fertilization (hpf). We observed that CNPs-treated embryos exhibited increased malformations and decreased hatching. A total of 236 differentially expressed genes were detected by transcriptome analyses, which were associated with phototransduction, amino acid metabolism, steroid and steroid hormone biosynthesis. Transcriptome results were verified by real-time fluorescence quantitative PCR (RT-qPCR). Our results indicated that CNPs exposure was most likely to lead to differential gene changes in steroid and hormone biosynthesis pathways, thus inducing developmental toxicity such as delayed incubation of zebrafish embryos, increased malformation rate and multiple malformation phenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2022.113417 | DOI Listing |
Biochim Biophys Acta Gen Subj
January 2025
Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan. Electronic address:
This study aimed to compare and evaluate the growth inhibition effects of eight previously synthesized compounds, cis-3,4-diaryl-α-methylene-γ-butyrolactams (compounds 1-8), on two human renal carcinoma cell (RCC) lines: CRL-1932 (rapid growth) and HTB-44 (slow growth). MTT assays and flow cytometry were conducted, revealing that compounds 5 and 6 had the potential to induce cell death in the slow-growing RCC cells (HTB-44), while compound 8 demonstrated effectiveness in both RCC lines (HTB-44 and CRL-1932). Additionally, a non-transformed HEK293 cell line and a transgenic zebrafish with a green fluorescent kidney Tg(wt1b:egfp) were used to assess the toxicities of compounds 5, 6, and 8.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:
With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: O, SO+OH, OH.
View Article and Find Full Text PDFThe first clinical trial of zebrafish embryos acting as cancer "avatars" will start soon.
View Article and Find Full Text PDFDuring early development, embryos coordinate the growth of different tissues to ensure that they reach the correct proportions. A new paper in Development shows that tissue scaling occurs in the tail of the post-gastrulation zebrafish embryo. The study suggests that this scaling is underpinned by multi-tissue tectonics, a mechanism whereby the deformation of one growing tissue can impact the dynamics of a neighbouring tissue.
View Article and Find Full Text PDFArch Toxicol
January 2025
Department of Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
Testing for developmental toxicity is an integral part of chemical regulations. The applied tests are laborious and costly and require a large number of vertebrate test animals. To reduce animal numbers and associated costs, the zebrafish embryo was proposed as an alternative model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!