The genus Alphitonia Reissek ex Endl. (Rhamnaceae): A review of its customary uses, phytochemistry and biological activities.

J Ethnopharmacol

Indigenous Bioresources Research Group, School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia. Electronic address:

Published: August 2022

Ethnopharmacological Relevance: Alphitonia Reissek ex Endl. is a relatively small genus of the family Rhamnaceae. Plants of this genus are found predominantly in the tropical regions of Southeast Asia, Australia and the Pacific, with some species being widely distributed and others endemic to a region. Almost half of the species of the Alphitonia genus have been reported for their customary (traditional and contemporary) medicinal uses. This includes for the treatment of skin conditions, headache, stomachache, inflammation, and body pain such as joint pain and childbirth.

Aim Of The Review: The aim of this review is to provide the first comprehensive account on the customary uses including ethnomedicinal uses, and phytochemistry and biological activities of the Alphitonia genus, and to identify gaps in current knowledge and scope for future research of plants of this genus.

Materials And Methods: Information relevant to the genus Alphitonia was collected by searching the scientific databases (SciFinder, Google Scholar, ACS publications, PubMed, Wiley Online Library and International Plant name Index). Species names were validated using the World Flora Online database (www.worldfloraonline.org).

Results: Eight plants from the Alphitonia genus have been reported to be used as customary medicines, i.e. A. excelsa, A. ferruginea, A. franguloides, A. incana, A. neocaledonica, A. petriei, A. philippinensis and A. zizyphoides. A. excelsa, A. petriei, A. philippinensis and A. zizyphoides, have been shown to have biological activities that align with their customary uses, including antimicrobial, antioxidant and anti-inflammatory activities. Only five Alphitonia species reported for their medicinal customary uses have been explored for their phytochemistry, i.e. A. excelsa, A. neocaledonica, A. petriei, A. philippinensis and A. zizyphoides. Compounds identified from these plants include those that are well known for their medicinal importance. A. macrocarpa, A. whitei and A. xerocarpus have also been examined for their phytochemistry and have been found to have the same or similar bioactive compounds to those found in customarily used Alphitonia species. No biological activities or phytochemistry studies have been reported for the known customarily used medicinal plants A. ferruginea, A. franguloides and A. incana.

Conclusions: This review highlights the customary uses, biological activities and phytochemistry of plants of the Alphitonia Reissek ex Endl. genus and highlights the significance of the knowledge systems of Indigenous peoples. Of the plants that have been researched for their biological activities and phytochemistry, there is good correlation with these properties and their customary medicinal uses. However, over half of the plants of the Alphitonia genus, including those that are already reported in the public domain for their customary medicinal uses, have had none or limited biological activities or phytochemistry studies conducted. While only eight species of the Alphitonia genus have been reported as customary medicines, other Alphitonia species also possess medicinally important compounds, and it is possible that they are customary medicines but their uses have not been shared publicly by the Indigenous knowledge custodians. There is clearly much scope for further investigation of this genus with regards to their ethnomedicinal uses and therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2022.115168DOI Listing

Publication Analysis

Top Keywords

biological activities
28
alphitonia genus
20
activities phytochemistry
16
alphitonia reissek
12
reissek endl
12
genus reported
12
reported customary
12
plants alphitonia
12
customary medicines
12
petriei philippinensis
12

Similar Publications

Bioactive Sulfonamides Derived from Amino Acids: Their Synthesis and Pharmacological Activities.

Mini Rev Med Chem

January 2025

Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.

Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides.

View Article and Find Full Text PDF

Unlocking Platelet Mechanisms through Multi-Omics Integration: A Brief Review.

Curr Cardiol Rev

January 2025

Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation.

Platelets, tiny cell fragments measuring 2-4 μm in diameter without a nucleus, play a crucial role in blood clotting and maintaining vascular integrity. Abnormalities in platelets, whether genetic or acquired, are linked to bleeding disorders, increased risk of blood clots, and cardiovascular diseases. Advanced proteomic techniques offer profound insights into the roles of platelets in hemostasis and their involvement in processes such as inflammation, metastasis, and thrombosis.

View Article and Find Full Text PDF

Antigen-presenting cells (APCs) process tumor vaccines and present tumor antigens as the first signals to T cells to activate anti-tumor immunity, which process requires the assistance of co-stimulatory second signals on APCs. The immune checkpoint programmed death ligand 1 (PD-L1) not only mediates the immune escape of tumor cells but also acts as a co-inhibitory second signal on APCs. The serious dysfunction of second signals due to the high expression of PD-L1 on APCs in the tumor body results in the inefficiency of tumor vaccines.

View Article and Find Full Text PDF

Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects.

View Article and Find Full Text PDF

Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!