Insights into carbon recovery from excess sludge through enzyme-catalyzing hydrolysis strategy: Environmental benefits and carbon-emission reduction.

Bioresour Technol

State key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.

Published: May 2022

This study introduced the excellent improvement of enzyme cocktail (lysozyme and protease) on hydrolysis efficiency and the role of reducing carbon emission as an alternative carbon source. The best dosing method after optimization was to add four parts of lysozyme at 0 h and one part of protease at 1 h. The extracellular proteins and polysaccharides increased by 118% and 64% respectively under the optimal dosing mode. Enzyme cocktails reduced more organic matters and extended the distribution of sludge particles in the small particle size part. The enzymatic-treated sludge could reduce 21.09 kg CO/t VSS if utilized to replace methanol for denitrification carbon source. Enzyme cocktails did better in enhancing both solubilization and hydrolysis than single enzymes under the optimal method. This study will provide a more integrated and comprehensive system for enzymatic pretreatment and new insight into the enzymatic pretreatment enhancing hydrolysis and reducing carbon emission.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127006DOI Listing

Publication Analysis

Top Keywords

reducing carbon
8
carbon emission
8
carbon source
8
enzyme cocktails
8
enzymatic pretreatment
8
insights carbon
4
carbon recovery
4
recovery excess
4
excess sludge
4
sludge enzyme-catalyzing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!