Calcium ions in industrial wastewater needs to be removed to prevent the production of limescale, which can have negative consequences. Biomineralization has become the focus due to its lower costs than traditional methods of remediation. In this study, calcium ions were bio-precipitated under the action of free and immobilized Bacillus amyloliquefaciens DMS6 bacteria, and the calcium ion removal efficiency was also compared. The results show that it only needed 3 days to decrease the calcium ion concentration to an ideal level of 76-116 mg/L under the action of DMS6 bacteria immobilized by activated carbon fiber, with calcium ion removal ratios reaching 99%-95% by the 7 day. DMS6 bacteria immobilized by activated carbon fiber were superior to free bacteria and bacteria immobilized by sodium alginate in calcium ion removal. Calcium ions are biomineralized into calcite, Mg-rich calcite, aragonite and monohydrocalcite with abundant organic functional groups, 4 types of secondary protein structures, amino acids, phospholipids, negative stable carbon isotope δC values (-16.68‰ to-17.25‰) and negatively charged biomineral surface. Calcium ions were diffused into cells and took part in the intracellular biomineralization of monohydrocalcite, also facilitating calcium ion removal. The formation of intracellular monohydrocalcite has rarely been reported. This study demonstrates an economic and environmentally friendly method to remove calcium ions from industrial wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134328DOI Listing

Publication Analysis

Top Keywords

calcium ion
24
calcium ions
20
ion removal
16
industrial wastewater
12
dms6 bacteria
12
bacteria immobilized
12
calcium
11
bacillus amyloliquefaciens
8
amyloliquefaciens dms6
8
ions industrial
8

Similar Publications

Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, , induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea.

View Article and Find Full Text PDF

This study focuses on enhancing the performance of photodetector through the utilization of inorganic perovskite material. It emphasizes that the unique properties of perovskite materials contribute to the superior performance of the photodetector. The focus is on the design and enhancement of CsSnI-based photodetector having graphene oxide (GO) and PCBM as charge transport layer, analysing their potential for improved operation.

View Article and Find Full Text PDF

Ion permeability profiles of renal paracellular channel-forming claudins.

Acta Physiol (Oxf)

February 2025

Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.

View Article and Find Full Text PDF

Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.

View Article and Find Full Text PDF

Metastatic melanoma causes a high rate of mortality. We conducted an integrated analysis to identify critical regulators associated with the prognosis, pathogenesis, and targeted therapies of metastatic-melanoma. A microarray dataset, GSE15605, including 12 metastatic-melanoma and sixteen normal skin (NS) samples, were obtained from the GEO database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!