AI Article Synopsis

Article Abstract

Pyrolysis combined with land application for dewatered municipal sludge disposal revealed advantages in heavy metals solidification and resource utilization compared with other disposal technologies. In this study, utilizing dewatered municipal sludge for calcium-containing porous adsorbent preparation via pyrolysis was proposed and verified. After pyrolyzing at 900 ° C (Ca-900), the dewatered sludge obtained maximum adsorption capacity (83.95 mg P⋅ g) and the adsorption process conformed to the pseudo-second-order model and double layer model. Characteristic analysis showed the predominant adsorption mechanism was precipitation. Continuous column bed experiment indicated 2 g adsorbent could remove 4.27 mg phosphorus from tail wastewater with the initial phosphorus concentration of 1.03 mg ⋅ L. No heavy metals leaching was observed from Ca-900 adsorbent with pH value exceeding 1.0, and merely 1% addition of Ca-900 adsorbent (after actual water phosphorus adsorption) with soil could extremely promote the early growth of seedlings. Economic estimates demonstrated that this cost-effective modification could generate the most add-on value production. Based on these results, the strategy of 'one treatment but two uses' was proposed in this study, converting the wastes to resource and providing a native strategy for sludge disposal and resource recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134302DOI Listing

Publication Analysis

Top Keywords

dewatered municipal
12
municipal sludge
12
converting wastes
8
wastes resource
8
resource utilization
8
adsorbent preparation
8
land application
8
sludge disposal
8
heavy metals
8
ca-900 adsorbent
8

Similar Publications

[Carbon Emission Analysis and Carbon Reduction Strategy of Small and Medium-scale Municipal Wastewater Treatment Plants in Cities and Towns].

Huan Jing Ke Xue

January 2025

Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.

The carbon emissions of three typical processes (AAO, MSBR, and oxidation ditch) were systematically analyzed from the perspective of the whole wastewater treatment process based on the annual data of eleven urban small and medium-scale WWTPs in the year 2022, and the effects of different influent characteristics (TP, TN, BOD, COD, influent volume, and COD/TN) on the carbon emissions were studied by using the partial least squares structural equation modeling (PLS-SEM) method. The results showed that indirect carbon emissions dominated the total carbon emissions of small and medium-scale WWTPs (69.5%), and carbon emissions from electricity consumption were the largest source (43.

View Article and Find Full Text PDF

Genomic analysis and antibiotic resistance of a multidrug-resistant bacterium isolated from pharmaceutical wastewater treatment plant sludge.

Ecotoxicol Environ Saf

December 2024

Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, NO.26, Jinjing Rd, Xiqing District, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, NO.26, Jinjing Rd, Xiqing District, Tianjin 300384, China. Electronic address:

Article Synopsis
  • - Pharmaceutical wastewater treatment plants (PWWTPs) can harbor antibiotic-resistant bacteria (ARBs) and genes, with the study isolating a multiantibiotic-resistant Acinetobacter lwoffii (N4) from sludge, showing high resistance to various antibiotics and metals.
  • - The strain N4 displayed enhanced resistance when exposed to both antibiotics and heavy metals, suggesting a synergistic effect on its resilience against treatments.
  • - Whole-genome sequencing revealed 23 antibiotic resistance genes, along with significant virulence factors, indicating N4's potential to be pathogenic and the risks associated with multidrug-resistant bacteria in wastewater systems.
View Article and Find Full Text PDF

Overcoming deep-dewatering challenges in food waste digestate with polyethylene oxide as an innovative conditioning agent.

Water Res

February 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center of Wastewater Resource Reuse, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. Electronic address:

The effective treatment of food waste digestate is critical for reducing environmental pollution and mitigating carbon emissions, with deep dewatering playing a pivotal role. Conventional dewatering agents such as polyaluminum chloride (PAC) and polyacrylamide (PAM), commonly employed in municipal sludge treatment, exhibit limited efficacy when applied to food waste digestate due to the latter's high salinity and advanced fermentation stages. This study introduces polyethylene oxide (PEO) as a novel conditioning agent and investigates its dewatering performance in comparison to PAC and PAM, elucidating the underlying mechanism.

View Article and Find Full Text PDF

Mechanistic insights into melanoidins-induced hydrophilicity of thermal hydrolyzed sludge and its impact on dewaterability.

Bioresour Technol

January 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China. Electronic address:

Although thermal hydrolysis pretreatment enhances disposal efficiency of sludge, it inevitably leads to melanoidins formation, which will negatively impact the subsequent wastewater treatment processes. However, their effect on the dewaterability of thermal hydrolyzed sludge (THS) remains poorly understood. This study aimed to uncover the underlying mechanisms of how melanoidins affecting dewaterability of THS.

View Article and Find Full Text PDF

Vermicomposting is a sustainable sludge recycling technology that utilizes an eco-friendly composting using earthworms and microorganisms. However, a high abundance of antibiotic resistance genes (ARGs) remains in dewatered sludge that is not satisfactorily eliminated by vermicomposting. Chinese herbs have played a major role in curing many diseases in East Asia, leading to a large amount of Chinese herbal residues (CHRs) are difficult to dispose of.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!