Microplastics (MPs) are emerging pollutants of global concern due to their pervasiveness, sorptive capacity for organic and inorganic pollutants, and direct and indirect toxicity to organisms and ecosystems. This study aimed to assess the concentration and the statistical difference in the concentration of microplastic-sorbed organic pollutants from two ecosystems, the marine and estuarine lagoon. Surface sediment from the estuarine lagoon and marine ecosystems were sampled for microplastics (1-5 mm). A total of 3680 MP particles were collected. The plastics were analyzed for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). ∑PAHs, ∑PCBs and ∑OCPs were between 0.00 and 0.32 mg/kg, 0.00-0.53 mg/kg and 0.04-2.02 mg/kg, respectively. The results showed a correlation of -0.2, 0.8 and 0.2 between the number of MPs and the concentration of PAHs, PCBs and OCPs, respectively, suggesting that the potential risk of accumulation of plastic-sorbed PCBs is higher than those of OCPs and PAHs. Mann Whitney U test (at 95% confidence level) indicated no statistical difference in the concentration of organic pollutants in lagoon and beach MPs. In addition, we found no significant difference in the accumulation of organic pollutants in MPs from beach drift and high waterlines. The result suggests that the concentration of microplastics-sorbed organic pollutants in both ecosystems is comparable and likely to pose similar potential risks. We recommend that plastic pollution in all ecosystems require attention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134193DOI Listing

Publication Analysis

Top Keywords

organic pollutants
20
statistical difference
8
difference concentration
8
pollutants ecosystems
8
estuarine lagoon
8
pollutants
7
organic
6
ecosystems
6
concentration
5
microplastics associated
4

Similar Publications

As the demand for clean water intensifies, developing effective methods for removing pollutants from contaminated sources becomes increasingly crucial. This work establishes a method for additive manufacturing of functional polymer sorbents with hollow porous features, designed to enhance interactions with organic micropollutants. Specifically, core-shell filaments are used as the starting materials, which contain polypropylene (PP) as the shell and poly(acrylonitrile-co-butadiene-co-styrene) as the core, to fabricate 3-dimensional (3D) structures on-demand via material extrusion.

View Article and Find Full Text PDF

Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.

View Article and Find Full Text PDF

Background: Growing evidence suggests that environmental pollutants exert a detrimental impact on female fertility. Among these pollutants, volatile organic compounds (VOCs), easily encountered in the environment, have garnered significant attention as prevalent airborne contaminants. Nevertheless, a definitive consensus regarding the association between VOCs and the incidence of infertility remains elusive.

View Article and Find Full Text PDF

Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.

View Article and Find Full Text PDF

Recent developments on aerial lab-on-a-drone platforms for remote environmental monitoring: A review.

Anal Chim Acta

February 2025

Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, 13084-971, SP, Brazil. Electronic address:

Background: Distinct classes of environmental contaminants - such as microplastics, volatile organic compounds, inorganic gases, hormones, pesticides/herbicides, and heavy metals - have been continuously released into the environment from different sources. Anthropogenic activities with unprecedented consequences have impacted soil, surface waters, and the atmosphere. In this scenario, developing sensing materials and analytical platforms for monitoring water and air quality is essential to supporting worldwide environmental control agencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!