A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual growth factor entrapped nanoparticle enriched alginate wafer-based delivery system for suppurating wounds. | LitMetric

Dual growth factor entrapped nanoparticle enriched alginate wafer-based delivery system for suppurating wounds.

Int J Biol Macromol

Nano Drug Delivery Systems (NDDS), Bio-Innovation Centre (BIC), Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India. Electronic address:

Published: May 2022

We have investigated the wound healing efficiency of calcium alginate wafer embedded with growth factor entrapped PLGA nanoparticle. Herein, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) entrapped PLGA nanoparticles were synthesized and embedded in a sodium alginate gel by freeze-drying technique. The synthesized dressing exhibited a high degree of swelling and appropriate porosity. The scaffold was characterized by Scanning Electron Microscopy (SEM) showing a highly porous morphology. Also, incorporation of growth factor loaded nanoparticles in a wafer-based delivery system resulted in localized growth factor delivery at the site of the wound in a sustained manner. The biocompatibility of the scaffold was evaluated by MTT assay, which showed a higher cell proliferation in the proposed scaffold as compared to the control. In vivo wound healing efficiency of the scaffold was evaluated using a full thickness murine wound model, which showed improved re-epithelialization, collagen deposition, and angiogenesis. These results suggest the use of the scaffold as a promising wound dressing material.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.03.068DOI Listing

Publication Analysis

Top Keywords

growth factor
24
factor entrapped
8
wafer-based delivery
8
delivery system
8
wound healing
8
healing efficiency
8
entrapped plga
8
scaffold evaluated
8
factor
6
wound
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!