Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The capacity attenuation of transition metal oxides (TMOs) and metal-organic frameworks (MOFs) is the obstacle for practical application in lithium ion batteries, due to the extensive volume variation upon charge/discharge cycles. Herein, a hierarchical composite material with copper oxide (CuO) multi-yolks and copper-1, 3, 5-benzenetricarboxylate (Cu-BTC) shell is synthesized by a facile method to study the effect of the hierarchical structure on the electrochemical performance. The porosity and pore volume of CuO@Cu-BTC composites are optimized to buffer the volume change and facilitate the infiltration of electrolytes by altering reaction conditions. The CuO@Cu-BTC (20 h) with the largest surface area and pore volume delivers an excellent reversible capacity of 780.7 mAh g at 200 mA g after 100 cycles, and ultrastable long-term performance with a specific capacity of 569 mAh g at a current density of 1000 mA g after 900 cycles. The corresponding full battery shows moderate capacity retention from 149.4 to 125.8 mAh g after 70 cycles, with a specific capacity retention of 84.2%, based on the mass of lithium iron phosphate (LiFePO) at 0.2 C (1 C = 170 mA g). This strategy applies copper oxide as the metal source of the coordination compound, as well as the internal yolks, which can be extended to the in-situ construction of other hierarchical composites, providing a new avenue for practical application of TMOs and MOFs as anode materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.02.134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!