The panorama of antibiotics and the related antibiotic resistance genes (ARGs) in landfill leachate.

Waste Manag

College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China.

Published: May 2022

Landfill leachate is an important source and sink of antibiotics and antibiotic resistance genes (ARGs), which poses a potential threat to human health and ecological environment. Ten antibiotics and 8 ARGs in leachates collected from Zhejiang Province, China, were systematically investigated. The effects of multiple factors were considered: leachate age, season when the leachate was sampled (dry or rainy), heavy metal concentrations, and leachate quality parameters. Leachate age was crucial to the profile of the detectable antibiotics and ARGs. The total concentration of antibiotics were in the order of macrolides > sulfonamides > tetracyclines and they decreased significantly with leachate age. Similarly, fewer ARGs were harbored in aged leachate; the order of abundance of the ARGs was mexF (11.92 ± 0.22 log gene copies/L) > sul2 > Intl1 > sul1 > ermB > mefA > tetM > tetQ (9.57 ± 1.32 log gene copies/L). The extreme abundances (i.e., the maxima and minima) of ARGs relating to the same class of antibiotic were always surprisingly similar and appeared in leachate of the same age. Seasonal variation greatly affected the concentrations of antibiotics in the leachate-the concentration difference between the dry and rainy seasons could reach two orders of magnitude. Heavy metal concentrations and leachate quality parameters also had important effects on the distribution of antibiotics and ARGs. Overall, the profile of antibiotics and ARGs in leachates was influenced by numerous factors, and the pollution of antibiotics and ARGs may be reduced and controlled by adjusting the environmental factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2022.03.008DOI Listing

Publication Analysis

Top Keywords

antibiotics args
20
leachate age
16
args
10
leachate
10
antibiotics antibiotic
8
antibiotic resistance
8
resistance genes
8
genes args
8
landfill leachate
8
antibiotics
8

Similar Publications

Soil permeability shaping ARGs patterns by affecting soil available nutrients in paddy fields.

Environ Pollut

January 2025

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, P.R. China.

Though the evidence for soil property could influence the antibiotic resistance genes (ARGs) profiles is mounting, studies regarding the effect of soil permeability on soil ARGs patterns are still ignored. This study investigated the dynamic distribution of ARGs in paddy fields with different soil permeability over various rice growing stages, as well as revealed the abiotic and biotic factors that shaping ARGs profiles. Results indicate that soil with high permeability improved the ARGs abundance through elevating the available nutrients in the soil.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Microbes as Resources to Remove PPCPs and Improve Water Quality.

Microb Biotechnol

January 2025

Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland.

The inadequate removal of pharmaceuticals and personal care products (PPCPs) by traditional wastewater treatment plants (WWTPs) poses a significant environmental and public health challenge. Residual PPCPs find their way into aquatic ecosystems, leading to bioaccumulation in aquatic biota, the dissemination of antibiotic resistance genes (ARGs), and contamination of both water sources and vegetables. These persistent pollutants can have negative effects on human health, ranging from antibiotic resistance development to endocrine disruption.

View Article and Find Full Text PDF

Background: The global spread of antibiotic resistance presents a significant threat to human, animal, and plant health. Metagenomic sequencing is increasingly being utilized to profile antibiotic resistance genes (ARGs) in various environments, but presently a mechanism for predicting future trends in ARG occurrence patterns is lacking. Capability of forecasting ARG abundance trends could be extremely valuable towards informing policy and practice aimed at mitigating the evolution and spread of ARGs.

View Article and Find Full Text PDF

Residual antimicrobial agents in wastewater and solid waste from antimicrobial manufacturing facilities can potentially contaminate environments. The World Health Organization has established technical guidelines for managing antimicrobial resistance (AMR) in pharmaceutical wastewater and solid waste. However, the scarcity of publicly available data on antimicrobial manufacturing processes impedes the development of effective mitigation strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!