In this study, we developed and validated a liquid chromatography triple quadrupole tandem mass spectrometry (LC-MS/MS) method used to simultaneously determine levels of four fluoroquinolones (ofloxacin, norfloxacin, lomefloxacin, and pefloxacin) and two antipsychotics (diazepam and methaqualone) in fish and shrimp. The samples were extracted with a mixture of anhydrous sodium sulfate and acetonitrile, and purified by C cartridge solid-phase extraction with an optimized eluent. The MS method was applied to recognize the molecular structure of these compounds according to a main fragmentation scheme. The key ions of identification and quantification were deduced from chemical structures. Multiple reaction monitoring was used to quantitatively analyse the compounds of interest. Satisfactory linearities were obtained ( ≥0.99) with the limits of quantitation (LOQs) ranging between 0.03 and 1.96 μg kg. The recoveries were 74-122%, with a relative standard deviation (RSD) below 4.9% for these compounds at the spiking level of three, five, and ten times the LODs, respectively. The LC-MS/MS method allows precise and sensitive determination of residues of six important banned veterinary drugs in fish and shrimp tissue. This methodological approach solved the problem imposed by the need for two or more analysis methods to analyse the compounds of interest described in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19440049.2022.2032381 | DOI Listing |
Aquat Toxicol
January 2025
Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Québec H4B 1R6, Canada.
Microplastics, particles between 0.001 and 5 mm in diameter, are ubiquitous in the environment and their consumption by aquatic organisms is known to lead to a variety of adverse effects. However, studies on the effects of microplastics on prey fish have not shown consistent trends, with results varying across species and plastic type used.
View Article and Find Full Text PDFMicroorganisms
January 2025
Institute of Food Sciences, Shanxi Normal University, Taiyuan 030031, China.
Lactic acid Bacteria (LAB) convert tryptophan to indole derivatives and induce protective IL-22 production in vivo. However, differences in metabolizing capabilities among LAB species have not been widely investigated. In the present study, we compared the capabilities of 186 LAB strains to produce four kinds of indole derivatives, including indole-3-carboxaldehyde (IAId), indole-3-lactic acid (ILA), indole-3-propanoic acid (IPA), and indole-3-acetic acid (IAA).
View Article and Find Full Text PDFAnimals (Basel)
January 2025
National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
Pacific white shrimp ( is an important aquaculture shrimp in China and globally due to its high nutritional value and delicious flavors [...
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Department of Basic Sciences, Faculty of Allied Health Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
Background: Dermatophytes, the primary causative agents of superficial cutaneous fungal infections in humans, present a significant therapeutic challenge owing to the increasing prevalence of recurrent infections and the emergence of antifungal resistance. To address this critical gap, this study was designed to investigate the antifungal potential of 3-benzylideneindolin-2-one against dermatophytes and assess its in vivo toxicological profile using brine shrimp and zebrafish embryo models.
Methods: The antifungal activity of 3-benzylideneindolin-2-one was evaluated against 30 clinical isolates of dermatophyte species, including Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum gypseum, Microsporum canis, and Epidermophyton floccosum, by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using the broth microdilution method.
Front Immunol
January 2025
Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States.
Rationale: Approximately 32 million people in the United States suffer from food allergies. Some food groups, such as legumes - peanuts, tree nuts, fish, and shellfish, have a high risk of cross-reactivity. However, the murine model of multiple food group cross-reactivity is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!