It is known that the microstructure and thereby the mechanical properties of membranes constituting microcapsules are sensitive to parameters such as precursor concentration and pH. In the case of polysiloxane microcapsules, the oligomers, which are already formed in the continuous oil phase, because of the inherent moisture content in the oil phase, deposit on the membrane surface, resulting in the formation of a microstructure with a hairy layer. An electrodeformation investigation shows that the deposition of these oligomers is predominant in the smaller microcapsules compared to the larger ones and results in strain hardening and plasticity in the microcapsule membrane at high deformation. However, if the hydrolysis time during the synthesis of microcapsules is controlled, a smooth morphology (with a diminished hairy layer) can be realized for smaller capsules, as well. This work, using the electrodeformation method, demonstrates significant viscoelasticity and plasticity in the response of the capsules to applied electric stress and establishes an equivalence between simple spring and dashpot element-based phenomenological models with respect to the membrane properties using a linearized viscoelastic elasto-electrohydrodynamic model. The model can capture plasticity and strain hardening that are otherwise missed in simplified elasticity-based models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c03293 | DOI Listing |
Nat Chem Biol
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes.
View Article and Find Full Text PDFSci Rep
January 2025
Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.
Efficient monitoring of the enzymatic PET-hydrolysis is crucial for developing novel plastic-degrading biocatalysts. Herein, we aimed to upgrade in terms of accuracy the analytical methods useful for monitoring enzymatic PET-degradation. For the HPLC-based assessment, the incorporation of an internal standard within the analytic procedure enabled a more accurate quantification of the overall TPA content and the assessment of molar distributions and relative content of each aromatic degradation product.
View Article and Find Full Text PDFPeptide-Ca chelates are innovative calcium supplements. possesses nutritional advantages for preparing calcium-binding peptides (CBPs), although there are limited studies on this subject. Therefore, this paper investigated the optimal condition for preparing CBPs and peptide-calcium chelates (LP-Ca), along with analyzing their microstructure, calcium-binding mechanisms, stability, and calcium transporting efficacy.
View Article and Find Full Text PDFTannase, as a type of tannin-degrading enzyme, can catalyze the hydrolysis of ester and depside bonds in gallotannins, thereby releasing gallic acid and glucose. Based on this reaction mechanism, Tannase can effectively improve the problems of bitter taste, weak aroma, and tea cheese in tea infusion, and is therefore widely used in the tea industry. However, due to high production costs, difficulties in purification and recovery, and insufficient understanding of Tannase properties, the large-scale application of Tannase is severely limited.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
Multiple sclerosis (MS) is a neurodegenerative disease, with inflammation and oxidative stress in the central nervous system being the main triggers. There are many drugs that reduce the clinical signs of MS, but none of them cure the disease. Food proteins have been shown to contain encrypted peptides that can be released after hydrolysis and exert numerous biological activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!