Extrusion-based three-dimensional (3D) printing techniques usually exhibit anisotropic thermal, mechanical, and electric properties due to the shearing-induced alignment during extrusion. However, the transformation from the extrusion to stacking process is always neglected and its influence on the final properties remains ambiguous. In this work, we adopt two different sized boron nitride (BN) sheets, namely, small-sized BN (S-BN) and large-sized BN (L-BN), to explore their impact on the orientation degree, morphology, and final anisotropic thermal conductivity (TC) of thermoplastic polyurethane (TPU) composites by fused deposition modeling. The transformation from one-dimensional axial alignment in the extruded filament to two-dimensional alignment (horizontal and vertical alignment) in the stacking filament of BN sheets is observed, and its impact on anisotropic TC in three directions is clarified. It is found that L-BN/TPU composites show a high TC of 6.45 W m K at 60 wt % BN content along the printing direction, while at a lower content (<40 wt %), S-BN/TPU composites exhibit a higher TC than L-BN/TPU composites. Effects of orientation, viscosity, and voids are comprehensively considered to elucidate such differences. Finally, heat dissipation tests demonstrate the great potential of 3D printed BN/TPU composites to be used in thermal management applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c23944 | DOI Listing |
IUCrJ
January 2025
Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland.
X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
We propose a mechanism to obtain chiral phononlike excitations from the bond-dependent magnetoelastic couplings in the absence of out-of-plane magnetization and magnetic fields. By mapping the hybrid excitation to its phononic analog, we reveal the impact of the lattice symmetry on the origin of the chirality. In the example of a triangular lattice ferromagnet, we recognize that the system is equivalent to the class D of topological phonons, and show the tunable chirality and topology by an in-plane magnetic field.
View Article and Find Full Text PDFACS Appl Opt Mater
December 2024
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States.
Langmuir
January 2025
Chemistry Department, Bilkent University, Ankara 06800, Turkey.
The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty UnB Planaltina, Materials Science Postgraduate Program, University of Brasília, Brasília, Federal District 73345-010, Brazil.
Two-dimensional (2D) silicon-based materials have garnered significant attention for their promising properties, making them suitable for various advanced technological applications. Here, we present Irida-Silicene (ISi), a novel 2D silicon allotrope inspired by Irida-Graphene (IG), which was recently proposed and is entirely composed of carbon atoms. ISi exhibits a buckled structure composed of 3-6-8 membered rings, unlike its planar carbon counterpart.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!