In cyanobacteria, phycobilisomes (PBS) serve as peripheral light-harvesting complexes of the two photosystems, extending their antenna size and the wavelength range of photons available for photosynthesis. The abundance of PBS, the number of phycobiliproteins they contain, and their light-harvesting function are dynamically adjusted in response to the physiological conditions. PBS are also thought to be involved in state transitions that maintain the excitation balance between the two photosystems. Unlike its eukaryotic counterpart, PSI is trimeric in many cyanobacterial species and the physiological significance of this is not well understood. Here, we compared the composition and light-harvesting function of PBS in cells of Synechocystis sp. PCC 6803, which has primarily trimeric PSI, and the ΔpsaL mutant, which lacks the PsaL subunit of PSI and is unable to form trimers. We also investigated a mutant additionally lacking the PsaJ and PsaF subunits of PSI. Both strains with monomeric PSI accumulated significantly more allophycocyanin per chlorophyll, indicating higher abundance of PBS. On the other hand, a higher phycocyanin:allophycocyanin ratio in the wild type suggests larger PBS or the presence of APC-less PBS (CpcL-type) that are not assembled in cells with monomeric PSI. Steady-state and time-resolved fluorescence spectroscopy at room temperature and 77 K revealed that PSII receives more energy from the PBS at the expense of PSI in cells with monomeric PSI, regardless of the presence of PsaF. Taken together, these results show that the oligomeric state of PSI impacts the excitation energy flow in Synechocystis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9157137 | PMC |
http://dx.doi.org/10.1093/plphys/kiac130 | DOI Listing |
Angew Chem Int Ed Engl
November 2024
Paul Scherrer Institute, Center for Energy and Environmental Sciences, 5232, Villigen PSI, Switzerland.
By combining in situ X-ray diffraction, Zr K-edge X-ray absorption spectroscopy and H and C nuclear magnetic resonance (NMR) spectroscopy, we show that the properties of the final MOF are influenced by HO and HCl via affecting the nucleation and crystal growth at the molecular level. The nucleation implies hydrolysis of monomeric zirconium chloride complexes into zirconium-oxo species, and this process is promoted by HO and inhibited by HCl, allowing to control crystal size by adjusting HO/Zr and HCl/Zr ratios. The rate-determining step of crystal growth is represented by the condensation of monomeric and oligomeric zirconium-oxo species into clusters, or nodes, with the structure identical to that in secondary building units (SBU) of UiO-66 framework.
View Article and Find Full Text PDFPlant J
December 2024
Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
Cyclic electron transport around photosystem I (PSI) is essential for the protection of the photosynthetic apparatus in plants under diverse light conditions. This process is primarily mediated by Proton Gradient Regulation 5 protein/Proton Gradient Regulation 5-like photosynthetic phenotype 1 protein (PGR5/PGRL1) and NADH dehydrogenase-like complex (NDH). In angiosperms, NDH interacts with two PSI complexes through distinct monomeric antennae, LHCA5 and LHCA6, which is crucial for its higher stability under variable light conditions.
View Article and Find Full Text PDFViruses
September 2024
HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA.
During HIV-1 virus assembly, the genomic RNA (vRNA) is selected for packaging by the viral protein Gag because it contains a specific packaging signal, Psi. While there have been numerous studies of Gag-Psi interactions, there is almost no information on the kinetic aspects of this interaction. We investigated the kinetics of Gag binding to different RNAs using switchSENSE DRX technology.
View Article and Find Full Text PDFPlant Physiol
February 2024
HUN-REN Biological Research Centre, Szeged, Institute of Plant Biology, Temesvári krt. 62, Szeged 6726, Hungary.
The acclimation of cyanobacteria to iron deficiency is crucial for their survival in natural environments. In response to iron deficiency, many cyanobacterial species induce the production of a pigment-protein complex called iron-stress-induced protein A (IsiA). IsiA proteins associate with photosystem I (PSI) and can function as light-harvesting antennas or dissipate excess energy.
View Article and Find Full Text PDFJACS Au
September 2023
Institute for Integrated Catalysis and Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
In situ Al K-edge X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS) spectroscopy in conjunction with ab initio molecular dynamics (AIMD) simulations show that adsorption of 1-propanol alters the structure of the Brønsted acid site through changes in the associated aluminum-oxygen tetrahedron in zeolite H-MFI. The decreasing intensity of the pre-edge signal of the in situ Al K-edge XANES spectra with increasing 1-propanol coverage shows that Al T-sites become more symmetric as the sorbed alcohol molecules form monomers, dimers, and trimers. The adsorption of monomeric 1-propanol on Brønsted acid sites reduces the distortion of the associated Al T-site, shortens the Al-O distance, and causes the formation of a Zundel-like structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!