Background: Fecal microbiota transplantation (FMT) interventions have recently been advocated to not succeed in every irritable bowel syndrome (IBS) patient, since the outcome of FMT varies with the IBS subset. This study investigated the factors potentially affecting FMT response using the same patient cohort used in our previous study.
Methods: This study included 109 patients who received allogenic FMT. Patients completed five questionnaires that assessed their symptoms and quality of life at baseline and at 2 weeks, 1 month, and 3 months after FMT. Patients also provided fecal samples at baseline and 1 month after FMT. The fecal bacterial profile and dysbiosis index (DI) were determined using 16S rRNA gene PCR DNA amplification covering variable genes V3-V9. Response to FMT was defined as a decrease of ≥50 points in the total IBS-SSS score after FMT.
Results: An IBS patient's response or nonresponse to FMT was not determined by age, IBS duration, IBS subtype, IBS symptoms, fatigue, quality of life, or DI. There were more male nonresponders than responders, and the fluorescence signals of Alistipes were lower in nonresponders than in responders.
Conclusions: We concluded that IBS patients who are male and/or have low fecal Alistipes levels are most likely to not respond to FMT treatment. Whether low fecal Alistipes levels could be used as a marker for predicting the outcome of FMT remains to be determined. www.
Clinicaltrials: gov (NCT03822299).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9539588 | PMC |
http://dx.doi.org/10.1111/nmo.14353 | DOI Listing |
Dig Dis Sci
January 2025
Division of Gastroenterology, University of California, San Francisco, CA, USA.
Background: Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO.
View Article and Find Full Text PDFGenes Brain Behav
February 2025
Département de Readaptation et gériatrie, University of Geneva, Geneva, Switzerland.
Human microbiota-associated murine models, using fecal microbiota transplantation (FMT) from human donors, help explore the microbiome's role in diseases like Alzheimer's disease (AD). This study examines how gut bacteria from donors with protective factors against AD influence behavior and brain pathology in an AD mouse model. Female 3xTgAD mice received weekly FMT for 2 months from (i) an 80-year-old AD patient (AD-FMT), (ii) a cognitively healthy 73-year-old with the protective APOEe2 allele (APOEe2-FMT), (iii) a 22-year-old healthy donor (Young-FMT), and (iv) untreated mice (Mice-FMT).
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation.
View Article and Find Full Text PDFJ Hepatol
January 2025
Division of Gastroenterology and Hepatology and Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA.
Background: Preventing hepatic encephalopathy (HE) recurrence in cirrhosis, which is associated with an altered gut-liver-brain axis, is an unmet need. Fecal microbiota transplantation (FMT) is beneficial in phase-1 studies, but route and dose-related questions remain.
Methods: We performed a phase-2 randomized, placebo-controlled, double-blind, clinical trial of capsule and enema FMT in cirrhosis and HE on lactulose and rifaximin.
Cancers (Basel)
December 2024
Division of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
Dysbiosis in the gut microbiota plays a significant role in GI cancer development by influencing immune function and disrupting metabolic functions. Dysbiosis can drive carcinogenesis through pathways like immune dysregulation and the release of carcinogenic metabolites, and altered metabolism, genetic instability, and pro-inflammatory signalling, contributing to GI cancer initiation and progression. infection and genotoxins released from dysbiosis, lifestyle and dietary habits are other factors that contribute to GI cancer development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!