Revised versions of our published pob-TZVP basis sets [Laun, J.; Vilela Oliveira, D. and Bredow, T., J. Comput. Chem., 2018, 39 (19), 1285-1290] have been derived for periodic quantum-chemical solid-state calculations. They complete our pob-TZVP-rev2 series [Vilela Oliveira, D.; Laun, J.; Peintinger, M. F. and Bredow, T., J. Comput. Chem., 2019, 40 (27), 2364-2376 and Laun, J. and Bredow, J. Comput. Chem. 2021; 42 (15), 1064-1072] for the elements of the fifth period and are based on the fully relativistic effective core potentials (ECPs) of the Stuttgart/Cologne group and the def2-TZVP valence basis of the Ahlrichs group. The pob-TZVP-rev2 basis sets are developed to minimize the basis set superposition error (BSSE) in crystalline systems. For the applied PW1PW hybrid functional, the overall performance, transferability, and SCF stability of the resulting pob-TZVP-rev2 basis sets are significantly improved compared to the original pob-TZVP basis sets. After augmentation with single diffuse s- and p-functions, reference plane-wave band structures of metals can be accurately reproduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.26839 | DOI Listing |
J Phys Chem A
January 2025
Hylleraas Centre, Department of Chemistry, UiT the Arctic University of Norway, Tromso̷ N-9037, Norway.
We introduce a method for computing quantum mechanical forces through surface integrals over the stress tensor within the framework of the density functional theory. This approach avoids the inaccuracies of traditional force calculations using the Hellmann-Feynman theorem when applied to multiresolution wavelet representations of orbitals. By integrating the quantum mechanical stress tensor over surfaces that enclose individual nuclei, we achieve highly accurate forces that exhibit superior consistency with the potential energy surface.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Endogenous Alu RNAs form double-stranded RNAs recognized by double-stranded RNA sensors and activate IRF and NF-kB transcriptional paths and innate immunity. Deamination of adenosines to inosines by the ADAR family of enzymes, a process termed A-to-I editing, disrupts double-stranded RNA structure and prevents innate immune activation. Innate immune activation is observed in Alzheimer's disease, the most common form of dementia.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, People's Republic of China.
Benign prostatic hyperplasia (BPH) is a prevalent urinary system disorder. Despite evidence of a significant genetic component from previous studies, the specific pathogenic genes and biological mechanisms are still largely unknown. The study utilized the FinnGen R10 dataset, encompassing 177,901 individuals (36,601 cases and 141,300 controls), and the GTEx v8 EQTLs files to conduct single-tissue and cross-tissue transcriptome-wide association studies (TWAS).
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China.
Correctly fixing the integer ambiguity of GNSS is the key to realizing the application of GNSS high-precision positioning. When solving the float solution of ambiguity based on the double-difference model epoch by epoch, the common method for resolving the integer ambiguity needs to solve the coordinate parameter information, due to the influence of limited GNSS phase data observations. This type of method will lead to an increase in the ill-posedness of the double-difference solution equation, so that the fixed success rate of the integer ambiguity is not high.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Optometry, Faculty of Allied Health Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.
Gas sensors play a vital role in detecting gases in the air, converting their concentrations into electrical signals for industrial, environmental, and safety applications. This study used density functional theory methods to explore the mechanism and sensitivity of a PdO-graphene composite sensor towards various gases (CO, NO, NO, HS, and Cl). All calculations, including structure, energy, and frequency optimizations, were performed using the Gaussian software with appropriate configurations and basis sets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!