Central nervous system (CNS) diseases, especially acute ischemic events and neurodegenerative disorders, constitute a public health problem with no effective treatments to allow a persistent solution. Failed therapies targeting neuronal recovery have revealed the multifactorial and intricate pathophysiology underlying such CNS disorders as ischemic stroke, Alzheimeŕs disease, amyotrophic lateral sclerosis, vascular Parkisonism, vascular dementia, and aging, in which cerebral microvasculature impairment seems to play a key role. In fact, a reduction in vessel density and cerebral blood flow occurs in these scenarios, contributing to neuronal dysfunction and leading to loss of cognitive function. In this review, we provide an overview of healthy brain microvasculature structure and function in health and the effect of the aforementioned cerebral CNS diseases. We discuss the emerging new therapeutic opportunities, and their delivery approaches, aimed at recovering brain vascularization in this context. SIGNIFICANCE STATEMENT: The lack of effective treatments, mainly focused on neuron recovery, has prompted the search of other therapies to treat cerebral central nervous system diseases. The disruption and degeneration of cerebral microvasculature has been evidenced in neurodegenerative diseases, stroke, and aging, constituting a potential target for restoring vascularization, neuronal functioning, and cognitive capacities by the development of therapeutic pro-angiogenic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/pharmrev.121.000418 | DOI Listing |
Turk J Med Sci
December 2024
Deputy Health Minister, Ministry of Health, Ankara, Turkiye.
Background/aim: Effective management of heart failure involves evidence-based use of multiple medications and their combinations. Furthermore, dosage escalation of the recommended medications is advised. In cases of advanced heart failure, long-term mechanical assistance devices or heart transplantation surgery may be necessary.
View Article and Find Full Text PDFWorld J Gastrointest Endosc
December 2024
Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy.
Water-assisted colonoscopy (WAC) application in inflammatory bowel diseases (IBD) endoscopy offers significant technical opportunities. Traditional gas-aided insufflation colonoscopy increases patient discomfort, presenting challenges in the frequent and detailed mucosal assessments required for IBD endoscopy. WAC techniques, including water immersion and exchange, provide superior patient comfort and enhanced endoscopic visualisation.
View Article and Find Full Text PDFFront Neurosci
December 2024
Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China. Electronic address:
Protein arginine methyltransferase 7 (PRMT7) is an essential epigenetic and post-translational regulator in eukaryotic organisms. Dysregulation of PRMT7 is intimately related to multiple types of human diseases, particularly cancer. In addition, PRMT7 exerts multiple effects on cellular processes such as growth, migration, invasion, apoptosis, and drug resistance in various cancers, making it as a promising target for anti-tumor therapeutics.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Department of Chemical Engineering, University of Waterloo, 200 University Ave. WestN2L 3G1WaterlooON Canada.
Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!