Difference between brain temperature and core temperature in severe traumatic brain injury: a systematic review.

J Neurosurg Sci

School of Mental Health and Neurosciences, Department of Neurosurgery, Maastricht University Medical Center+, Maastricht University, Maastricht, the Netherlands.

Published: February 2023

Introduction: Intensive care management for traumatic brain injury (TBI) patients aims to prevent secondary cerebral damage. Targeted temperature management is one option to prevent cerebral damage, as hypothermia may have protective effects. By conducting a systematic literature review we evaluated: 1) the presence of a temperature difference (gradient) between brain temperature (Tb) and core temperature (Tc) in TBI patients; and 2) clinical factors associated with reported differences.

Evidence Acquisition: The PubMed database was systematically searched using Mesh terms and key words, and Web of Sciences was assessed for additional article citations. We included studies that continuously and simultaneously measured Tb and Tc in severe TBI patients. The National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies was modified to fit the purpose of our study. Statistical data were extracted for further meta-analyses.

Evidence Synthesis: We included 16 studies, with a total of 480 patients. Clinical heterogeneity consisted of Tb/Tc measurement site, measurement device, physiological changes, local protocols, and medical or surgical interventions. The studies have a high statistical heterogeneity (I2). The pooled mean temperature gradient between Tb and Tc was +0.14 °C (95% confidence interval: 0.03 to 0.24) and ranged from -1.29 to +1.1 °C. Patients who underwent a decompressive (hemi)craniectomy showed lower Tb values compared to Tc found in three studies.

Conclusions: Studies on Tb and Tc are heterogeneous and show that, on average, Tb and Tc are not clinically significant different in TBI patients (<0.2 °C). Interpretations and interventions of the brain and central temperatures will benefit from standardization of temperature measurements.

Download full-text PDF

Source
http://dx.doi.org/10.23736/S0390-5616.21.05519-3DOI Listing

Publication Analysis

Top Keywords

tbi patients
16
brain temperature
8
temperature core
8
core temperature
8
traumatic brain
8
brain injury
8
cerebral damage
8
patients clinical
8
included studies
8
temperature
7

Similar Publications

: Despite improvements in technology and safety measures, injuries from collisions involving motor vehicles (CIMVs) continue to be prevalent. Therefore, our goal is to investigate the different patterns of head injuries associated with CIMVs. : This is a single-center, retrospective study of patients with motor vehicle-related trauma between 1 January 2016-31 December 2023.

View Article and Find Full Text PDF

Traumatic brain injury (TBI), resulting from external forces, is a leading cause of disability and death, often leading to cognitive deficits that affect attention, concentration, speech and language, learning and memory, reasoning, planning, and problem-solving. Given the diverse mechanisms underlying TBI symptoms, it is essential to characterize its neurophysiological and neuropsychological effects. To address this, we employed weighted coherence (WC) analysis in patients performing the Halstead-Reitan categorization task, alongside a control group of eight healthy individuals.

View Article and Find Full Text PDF

Lactate is a byproduct of glycolysis, often linked to oxygen deprivation. This study aimed to examine how lactate levels (LLs) affect clinical outcomes in patients with severe TBI, hypothesizing that higher LLs would correlate with worse outcomes. : This is a level 1 single-center, retrospective study of patients with severe TBI between 1 January 2020 and 31 December 2023, inclusive.

View Article and Find Full Text PDF

: The aim of this study was to determine if performing ultrasound-guided, bilateral, two-level cervical sympathetic chain blocks (2LCSBs) (performed on subsequent days) improves symptoms associated with traumatic brain injury (TBI) that do not overlap with posttraumatic stress disorder (PTSD). : A retrospective chart review was conducted between August 2022 and February 2023. We identified twenty patients who received bilateral 2LCSBs for PTSD and anxiety symptoms and who also had a history of TBI.

View Article and Find Full Text PDF

Transcranial pulsed current stimulation alleviates neuronal pyroptosis and neurological dysfunction following traumatic brain injury via the orexin-A/NLRP3 pathway.

Neuropeptides

January 2025

Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China. Electronic address:

Traumatic brain injury (TBI) is a life-threatening condition with high incidence and mortality rates. The current pharmacological interventions for TBI exhibit limited efficacy, underscoring the necessity to explore novel and effective therapeutic approaches to ameliorate its impact. Previous studies have indicated that transcranial pulsed current stimulation (tPCS) can improve neurofunctional deficits in patients by modulating brain neuroplasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!